Impact of CME on the 3D coronal electron density

M.Kramar¹, J.Davila², H.Xie¹

¹ The Catholic University of America, NASA-Goddard Space Flight Center ² NASA-Goddard Space Flight Center

Scalar Field Tomography: Regularization

- Problem is badly conditioned, e.g. number of unknown variables exceeds the number of equations
- Random noise in the data

In result, there is possible no unique reconstruction. Problem is ill-conditioned.

$$F = \sum_{i=1}^{\text{Number of Rays}} \left(I_i^{\text{sim}} - I_i^{\text{obs}} \right)^2 + \mu \cdot F_{\text{reg}} =$$
$$= \left| \mathbf{A} \cdot \mathbf{X} - \mathbf{Y} \right|^2 + \mu \cdot \left| \mathbf{L} \cdot \mathbf{X} \right|^2$$

Tomography for the Solar Corona

- Problem is badly conditioned, e.g. number of unknown variables exceeds the number of equations
- Noise in the data

• Stationarity of the corona during the observations must be assumed. Coronal observations are restricted to only one-three view direction in ecliptic plane.

Tomographic Reconstruction for the Solar Corona

Input:

- COR1 observations: pB images, 341x341 pixels
- Two weeks, ~ twice per day
- Roll minimum background subtracted
- Starting point for the iterations is flat field (constant density)

Output:

• 3D Electron Density Distribution: 128x128x128 pixels

Reconstruction: CAR 2058

Isosurface: N_e =3.6*10¹⁰ m⁻³

Isosurface: Ne=3.6e+10 m^{-3}

Reconstruction: CAR 2058

Isosurface: N_e =3.6*10¹⁰ m⁻³

Isosurface: Ne= $3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: N_e =3.6*10¹⁰ m⁻³

Isosurface: $Ne=3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: N_e =3.6*10¹⁰ m⁻³

Isosurface: $Ne=3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: N_e =3.6*10¹⁰ m⁻³

Isosurface: Ne= $3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: N_e =3.6*10¹⁰ m⁻³

Isosurface: $Ne=3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: N_e =3.6*10¹⁰ m⁻³

Isosurface: $Ne=3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: N_e =3.6*10¹⁰ m⁻³

Isosurface: Ne= $3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: N_e =3.6*10¹⁰ m⁻³

Isosurface: Ne= $3.6e+10 m^{-3}$

Spherical cross-section at $2 R_{sun}$

Corrington latitude [deg]

Corrington lotitude [deg]

2

3

90 $2.0R_{\odot}$ Reconstruction NSO CAR2058 -90 90 270 180 360 Carrington longitude [deg] 600 [cm^{-3/2}] 100 200 300 400 500 90 MHD simulation (http://iMHD.net/stereo) $2.0R_{\odot}$ MHD -9090 270 360 180 Carrington longitude [deg]

 $5 [10^6 \text{ cm}^{-3}]$

White contour lines are boundary between open and closed magnetic field lines in potential field reconstruction with SS=2.5*R*sun

Black contour line is the magnetic neutral line

3D Electron Density: Streamer

Red lines on pictures below are the streamer's positions found by triangulation method

Cross-section by plane perpendicular to *z*-axis (carrington system)

Reconstruction of the electron density for the Solar Corona: pre- and post-CME corona

CME: June 1st, 2008

<u>CME: Dec 31st, 2007</u>

CME: June 1st, 2008

Before the CME

After the CME

CME: June 1st, 2008

Before the CME

After the CME

CME: Dec 31st, 2007 & Jan 2, 2008

Before the CME

After the CMEs

Reconstructions for the whole year of 2008

Reconstructions for the whole year of 2008

Reconstructions for the whole year of 2008

Conclusion

- It was found evidence of streamer blow out during CME event on June 1st 2008 – it is not LOS effect.
- Streamer mass loss for slow CME on 1st June 2008 is 9*10¹⁴ gram which is comparible with the CME mass in COR1 field of view
- After CME the coronal magnetic field comes to the nearly potential configuration.
- We can produce 3D tomographic reconstruction almost for any period of COR1 observations in routine way.
 So, more statistical study is in progress.