Eigenmode Structure in Solar Wind Langmuir Waves

David Malaspina, Robert Ergun

University of Colorado, Boulder Laboratory for Atmospheric and Space Physics (LASP)

> STEREO SWG November 14 2007

TDS Langmuir waveforms from SWAVES

What determines

- modulation ?
- amplitudes ?
- packing ?
- growth / maintenance ?

Similar Waveforms seen by

- Wind
- Ulysses
- Galileo
- ISEE3

Many Theories:

(Ginzburg and Zheleznyakov 1958) (Bardwell and Goldman 1976) (Lin et al. 1981) (Li, Robinson, and Cairns 2006) (many,many others...)

Parameterize Turbulent Solar Wind

Eigenmode Solutions for Langmuir Electric field

$$E(x,t) = \sum_{n}^{\infty} A_{n}E_{n}$$
Envelope
Plasma Oscillation
$$E_{n} = H_{n}(Qx)e^{-\frac{(Qx)^{2}}{2}}e^{i(k+\Delta k)x-i(\omega+\Delta\omega)t+\phi}$$

$$Q^{2} = \frac{\omega_{plasma}}{\sqrt{3}v_{e}L} \qquad v_{e} = \sqrt{\frac{k_{b}T_{e}}{m_{e}}} \qquad \Delta k = -\frac{\omega_{plasma}v\Delta}{3v_{e}^{2}}$$

$$v_{\Delta} = v_{group} - v_{sound} \qquad \Delta \omega = \frac{(2n+1)\sqrt{(3)}v_{e}}{2L} - \frac{v_{\Delta}^{2}\omega_{plasma}}{6v_{e}^{2}}$$
Quantization condition

Selecting ILS Events for Eigenmode Description

Case Study Fits (Simple Case)

Case Study Fits (More Complex)

15_Jan_2007_17_14_25_248_B 20 10 (m//m) 0 -10 -20 20 10 (m//m) 0 -10 -20 60 80 40 100 (msec) 10-8 **10**⁻¹⁰ EX-EV 10⁻¹²

> 22.6 22.7 22.8 Frequency (kHz)

22.9

23.0

10⁻¹⁴

10⁻¹⁶

22.4

22.5

<u>mode</u>	<u>An</u>
0	0.45
1	0.5
2	0.05

Param.	<u>Val.</u>	<u>Unit</u>
Vb	0.24*c	m/s
Vsw * B/ B	600	km/s
Q	0.0002	1/m
Те	4.9e5	K
fp	22.8	kHz
Length	15.8	km
Vg	311	km/s
Ve	2733	km/s
W	5e-5	
k/Q	7.43	

Case Study Fits (Very Complex)

Param.	<u>Val.</u>	<u>Unit</u>
Vb	0.2*c	m/s
Vsw * B/ B	280	km/s
Q	0.0012	1/m
Те	7091 *(2-4)	K
fp	20.2	kHz
Length	3.31	km
Vg	6	km/s
Ve	328	km/s
W	1e-3	
k/Q	4.99	

Hermite-Gauss Eigenmode solutions describe Langmuir packet modulation (few modes!!)

<u>1D physics dominates</u> in many cases (polarization and B field measurements support)

Beams interact with density cavities <u>only</u> when density cavity is the proper curvature for a given beam wave number What determines relative mode powers?

 Why are low order modes observed more frequently?

 Why should waves saturate at any particular E field value?

Algorithm

ILS Peak to background RMS

Transit Time Simulations

Eigenmode Growth Results

k/Q

• Wider plateaus => higher modes

1D ILS Langmuir wave modulation <u>well described</u> as trapped Eigenmodes of parabolic density well

(what about 2D and 3D?)

Eigenmode growth by transit time effects <u>consistent</u> with observed saturation and mode structure

(nonlinear effects?)

Zakharov + Vlasov simulation results (preliminary) show Langmuir localization to shallow density wells

(very preliminary)

Field Aligned 3D Polarization

Field Aligned 3D Polarization

Field Aligned 3D Polarization

Polarization For Distinct Type III Events

3D Polarization for Jan 07 Langmuir Events

- Frequency structure observations near the $w_{\rm p}\,$ interpreted as eigenmode structure in the ionosphere (McAdams and LaBelle 1999 / McAdams, Ergun and LaBelle 2000)
- Similar to freq structure in STEREO observations

80

1.0×104

100

1% or <

variation

60

ms

STEREO Efield data

0-130 ms

120

1.5×10⁴

Please acknowledge data provider, D. J. McComas at SWRI and CDAWeb when using these data. Generated by CDAWeb on Thu Sep 13 13:29:19 2007

Yet More Sanity Check

- Using 2D Zakharov code reduced to 1D (Newman et al. 1990)
- Langmuir waves will grow in cavities, (when plane wave solutions absent)
- Waves travel with moving density wells (stay coherent)
- Waves will selectively grow in wells of certain sizes, depending on e- beam driving k

Langmuir Wave Profiles

