STEREO SPICE Tutorial

- It's been the intention of the STEREO Science Center to make the use of SPICE kernels by the instrument teams as simple as possible
- The SSC has taken on the responsibility of organizing the SPICE orbit and attitude files, and writing general software to access them.
- All the software and data files are distributed as part of SolarSoft.
- We've also now gotten permission to distribute the SPICE/IDL library as part of SolarSoft

STEREO SPICE Kernels within SolarSoft

SolarSoft Kernel Lists

ah/

epm/

gen/

sclk/

attitude_history_ahead_sim1.dat attitude_history_ahead_sim2.dat attitude_history_ahead_sim3.dat attitude_history_behind_sim2.dat attitude_history_behind_sim3.dat definitive_ephemerides_ahead_sim3.dat definitive_ephemerides_behind_sim3.dat definitive_ephemerides_behind_sim3.dat

ephemerides_ahead.dat ephemerides_ahead_sim1.dat ephemerides_ahead_sim2.dat ephemerides_ahead_sim3.dat ephemerides_behind.dat ephemerides_behind_sim2.dat ephemerides_behind_sim3.dat

- Text files, in top directory, contain lists of current kernels, and the order to load them in.
- SolarSoft routines use these lists to know what kernels to load.
- Will be automatically generated during the mission.
- Database used to keep track of kernels.
- Example text files for Simulations 1, 2, and 3.

stereo_kernels.dbf stereo_kernels.dbf stereo_kernels.dbh stereo_kernels.dbh stereo_kernels.dbx stereo_kernels.dbx

Example text file

Running the Software

- Need to be fairly up-to-date with SolarSoft
- Select one or more STEREO instruments, and set up SolarSoft, e.g.
 - > setenv SSW_INSTR "ssc secchi"
 - > source \$SSW/gen/setup/setup.ssw
- Running "sswidl" should produce a message like the following:

```
Registering DLM /.../lib/icy.dlm
```

 On Solaris, one must use "sswidl -32" to run IDL in 32-bit mode.

Spacecraft Positions

• The basic routine for deriving spacecraft coordinates (and velocities) is GET_STEREO_COORD, e.g.

```
Coord = GET_STEREO_COORD( Date, 'Ahead' )
```

- Can also be used for Sun, Moon, or planets.
- Supports a wide variety of coordinate systems through the SYSTEM keyword (e.g. SYSTEM='GSE'). Default is HCI.
- SPICE kernels will be automatically loaded the first time the routine is called.
- CONVERT_STEREO_COORD can be used to convert between coordinate systems, e.g.

CONVERT_STEREO_COORD, Date, Coord, 'HCI', 'GSE'

converts from HCI to GSE coordinates

Longitude and Latitude

• GET_STEREO_LONLAT returns the position as a radial distance, longitude, and latitude, e.g.

LonLat = GET_STEREO_LONLAT(Date, 'Ahead')

- Accepts same keywords as GET_STEREO_COORD.
- CONVERT_STEREO_LONLAT can be used to convert between coordinate systems, e.g.

CONVERT_STEREO_LONLAT, Date, LonLat, 'HCI', 'GSE'

converts from HCI to GSE coordinates.

• Can be used for converting star positions.

Spacecraft Attitude

• Basic routine for returning the spacecraft attitude is GET_STEREO_CMAT, e.g.

```
Cmat = GET_STEREO_CMAT( Date, 'Ahead' )
```

 Attitude returned as a C-matrix formed of the x, y, and z unit vectors, such that, in IDL,

V_{INSTRUMENT} = Transpose(Cmat) # V_{REFERENCE}

(where $V_{\text{INSTRUMENT}}$ and $V_{\text{REFERENCE}}$ are row vectors).

- Recent change will return "predicted" attitude for dates without an attitude history file.
 - Assumes perfect alignment in STEREO Science Pointing coordinate system
 - Only works for dates covered by an ephemeris file.

Spacecraft Attitude as Angles

• GET_STEREO_HPC_POINT returns pointing as used within FITS files

Miscellaneous Routines

- GET_STEREO_CARR_ROT: Returns Carrington rotation number of subsolar point.
- **GET_STEREO_SEP_ANGLE**: Returns separation angle between spacecraft or other bodies.
- **STEREO_COORD_INFO**: Prints out synopsis of spacecraft positions.

Maintenance routines

- **SPICE_KERNEL_REPORT**: Reports which kernels are loaded.
- **GET_STEREO_SPICE_RANGE**: Reports the time range covered by a SPICE kernel.
- **GET_STEREO_KERNEL**: Reports which ephemeris or attitude history file is being used for a given date and spacecraft.

Loading Kernels

- Normally, the loading of kernels is automatic.
- One can load kernels by hand through LOAD_STEREO_SPICE
 - To load kernels from the mission simulation (e.g. /SIM3)
 - To reload kernels (with /RELOAD keyword)
 - To load specific kernels
- Use LOAD_STEREO_SPICE_GEN to load only the generic kernels (planetary ephemerides, leap seconds, spacecraft clocks, frame definitions).
- Multiple calls won't do anything unless called with /RELOAD. That allows LOAD_STEREO_SPICE to be embedded within routines without causing unnecessary reloading.
- Also UNLOAD_STEREO_SPICE & UNLOAD_STEREO_SPICE_GEN

Positional Coordinate Systems—Geocentric

GEI	Geocentric Equatorial Inertial	X=First point of Aries,
		Z=Geographic north pole
GEO	Geographic	X=Greenwich meridian on equator
		Z=Geographic north pole
GSE	Geocentric Solar	X=Earth-Sun line
	Ecliptic	Z=Ecliptic north pole
MAG	Geomagnetic	Z=Dipole axis
		X=along meridian containing dipole axis
		Y=along geographic equator
GSM	Geocentric Solar	X=Earth-Sun line
	Magnetospheric	Z=projection of dipole axis
SM	Solar Magnetic	Z=dipole axis
		Y=perpendicular to Earth-Sun line

Positional Coordinate Systems—Heliocentric

HCI	Heliocentric Inertial (default)	Z=Solar rotational axis
		X=Solar ascending node on ecliptic
HAE	Heliocentric Aries Ecliptic	X=First point of Aries
		Z=Ecliptic north pole
HEE	Heliocentric Earth Ecliptic	X=Sun-Earth line
		Z=Ecliptic north pole
HEEQ	Heliocentric Earth Equatorial	Z=Solar rotational axis
		X=Along solar central meridian as seen from Earth
CARR	Carrington Heliographic	Z=Solar rotational axis
		X=Along Carrington prime meridian

Pointing Coordinate Systems

HGRTN	Heliocentric Radial- Tangential-Normal	X=Sun-spacecraft line Z=Projection of solar rotational axis
RTN	Radial-Tangential- Normal (default) (spacecraft-centered)	Same as HGRTN (only origin is different)
HPC	Helioprojective- Cartesian (FITS files—used by GET_STEREO_HPC_POINT)	Z=Sun-spacecraft line Y=Projection of solar rotational axis (Differs from RTN only in notation—not supported by GET_STEREO_COORD)
HERTN	Heliocentric Ecliptic RTN <i>(New)</i>	X=Sun-spacecraft line Z=Projection of ecliptic north pole
SCI	STEREO Science Pointing	X=Spacecraft-Sun line Z=Projection of Earth-spacecraft line (Ahead upside-down)
STPLN	STEREO Mission Plane (<i>New</i> —for stereo pairs)	X=Spacecraft-Sun line X-Y plane contains both spacecraft