IMPACT Data Plans May 2006

Peter Schroeder UC-Berkeley peters@ssl.berkeley.edu

IMPACT Team Member Institutions and Primary Roles

- University of California, Berkeley-Space Sciences Laboratory (IMPACT Management, SWEA, STE, IDPU)
- NASA Goddard Space Flight Center (MAG, SEP-LET, HET)
- California Institute of Technology (SEP-LET, HET)
- University of Maryland (SEP-SIT)
- University of Kiel (SEP-SEPT)
- Centre d'Etude Spatiale des Rayonnements CESR (SWEA)
- Los Alamos National Laboratory (Science Integration, SEP-SIT)
- Max Planck Institut fur Aeronomie (SEP-SIT)
- Jet Propulsion Laboratory (SEP-LET, HET)
- ESTEC-European Space Agency (SEP-SEPT)
- DESPA Observatoire de Paris-Meudon (SWAVES/IMPACT coordination)
- University of California, Los Angeles (MAG, IMPACT Data Web)
- SAIC-Science Applications International Corporation (IMPACT Modeling)
- NOAA Space Environment Center (IMPACT Modeling, Space Weather Applications)
- University of Michigan (IMPACT Modeling)
- KFKI-Hungarian Research Institute for Particle and Nuclear Physics (SEP Modeling)

What IMPACT contributes to the content of STEREO data

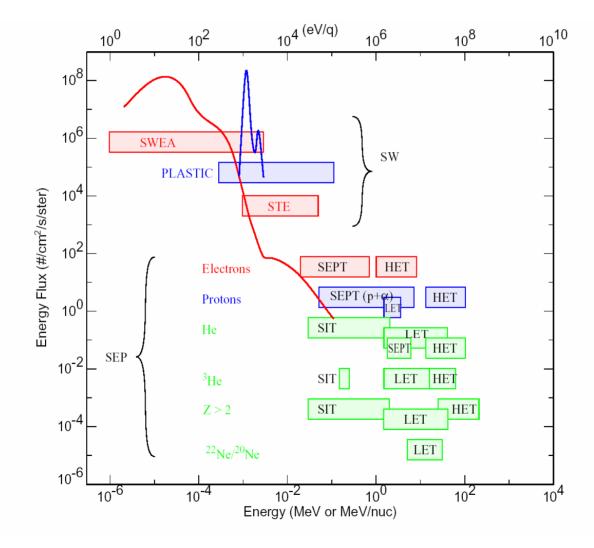
•SECCHI (PI Russ Howard, NRL)- Remote Sensing Package that will track Coronal Mass Ejections (CMEs) from the Sun to the Earth.

- Two White Light Coronagraphs (COR1,COR2)- COR1 explores 1.4 4 Rsun. COR2 explores 2 15 Rsun
- Extreme Ultra Violet Imager (EUVI)- Observes chromosphere and inner corona
- Heliospheric Imager (HI1, HI2)- Observes Coronal Mass Ejections from the Sun to the Earth (12 300 Rsun)

•IMPACT (PI Janet Luhmann, UCB)- will sample the 3-D distribution of solar wind plasma

electrons, the characteristics of the energetic particle ions and electrons, and the local magnetic field.

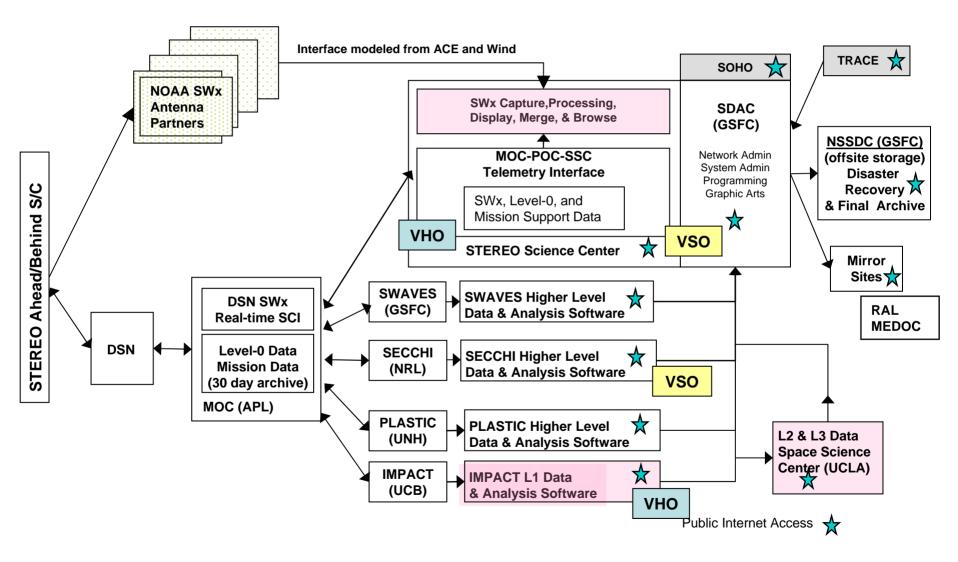
- •Solar Wind Experiment (SWEA)-Measures ~0-3 keV electrons with wide angle coverage
- •Suprathermal Electron Telescope (STE)-Measures electrons from 2-100 keV with wide angle coverage
- •Magnetometer Experiment (MAG)-Measures the vector magnetic field at 65,536 nT and 500 nT ranges
- •Solar Energetic Particle Experiment (SEP) Suite
 - Measures electrons from 0.02-6 MeV
 - Measures protons from 0.02 100 MeV
 - Measures helium ions from 0.03 100 MeV/nucleon
 - Measures heavier ions form 0.03 40 MeV/nucleon


•PLASTIC (PI Toni Galvin, UNH) - will provide the plasma characteristics of protons, alpha particles, and heavy ion. Provide composition measurements of heavy ions and characterizes the CME plasma

•SWAVES (PI Jean-Louis Bougeret, Paris Obs.)- in-situ as well as remote sensing instrument. Tracks CME Driven Shocks from the Corona to the Earth.

Basic IMPACT Measurements

Experiment	Instrument	Measurement	Energy or Mag. field range	Time Res.	Beacon Time Res. (*)	Instrument provider	
SW	STE	Electron flux and anistropy	2-100 keV	16 s	2D x 3E, 60s	UCB (Lin)	
	SWEA	3D electron distrib., core & halo density, temp. & anisotropy	~0-3 keV	3D=1 min 2D=8s Mom.=2s	Moments, 60s	CESR (Sauvaud) + UCB (Lin)	
MAG	MAG	Vector field	±500nT, ±65536 nT	1/4 s	10s	GSFC (Acuna)	
SEP	SIT	He to Fe ions ³ He	0.03-2 MeV/nuc 0.15-0.25 MeV/nuc	1 min 1 min	3S x 2E, 60s	U. of Md. (Mason) + MPAE (Korth) + GSFC (von Rosenvinge)	
	SEPT	Diff. electron flux Diff. proton flux Anistropies of e,p	20-400 keV 60-7000 keV As above	1 min 1 min 15 min	3E, 60s 3E, 60s	U. of Kiel (Mueller- Mellin) + ESTEC (Sanderson)	
	LET	Ion mass numbers 2-28 & anisotropy	3-30 MeV/nuc	1-15 min.	2S x 2E, 60s	Caltech (Mewaldt) + GSFC (von Rosenvinge)	
		³ He ions flux & anistropy	2-15 MeV/nuc	15 min.	1E, 60s	+ JPL (Wiedenbeck)	
		H ions flux & anistropy	1.5-6 MeV	1-15 min.	1E, 60s		
	HET	Electrons flux H	1-6 MeV 13-100 MeV	1-15 min. 1-15 min.	1E, 60s 1E, 60s	GSFC (von Rosenvinge) + Caltech (Mewaldt)	
		He ³ He	13-100 MeV 15-60 MeV/nuc	1-15 min. 15 min	1E, 60s	+ JPL (Wiedenbeck)	
	SEP Common					Caltech (Mewaldt) + GSFC (von Rosenvinge)	
IMPACT Common	IDPU (+Mag Analog)					UCB (Curtis)	


IMPACT Particles Domain: Solar Wind, Suprathermal and SEP electrons, SEP ions

IMPACT Data Products

- Beacon
 - Produced at SSC (GSFC)
 - Uses NOAA antenna partners for 24/7 space weather monitoring
- L1
 - Produced at UCB
 - Highest time resolution data in physical units of all measured quantities
 - Available in variety of formats (CDF, ASCII, FITS, ...)
 - Reside natively in ISTP-compliant CDF's
- L2
 - Produced at UCLA
 - Key parameter (1-minute cadence) data in physical units
 - Includes PLASTIC and SWAVES
 - Available in ASCII
- L3
 - Produced at UCLA
 - Higher level products such as event lists
 - ASCII

Data Flow Block Diagram

Beacon Data Processing Software Update

- IMPACT delivered first version of Beacon processing software to SSC in November
- Outstanding issues:
 - Need calibration data to finish conversion to physical units (SWEA and STE)
 - Not all status codes have been fully defined (SEP)
 - Still need to check-out MAG code
 - All instruments: Need to convert from instrument coordinates to STEREO HGRTN coordinates

L1 Data Processing Software Update

- LET, SIT, SEPT, MAG, SWEA and STE have delivered software but all require further testing (and calibrations)
- Still need HET software (delivery expected very soon)
- Possibility of sharing pre-validated data with PLASTIC and S/WAVES
- Produced preliminary L1 science products during recent Mission Simulation

L2 Data Processing Software Update

- Need to finalize quantities to include in L2
- First cut quantities = Beacon quantities
- Possibility of including derived quantities
- Need to continue working with PLASTIC and S/WAVES

Building from CDAWeb

GODDA Space P	+ Goddard I + Visit NAS		SEARCH NASA + GO			
+ SPDF HOME	+ DATA & ORBITS	+ MODELS	+ RESOURCES + RE		ARCH	+ EDUCATION
+ CDAWeb Home CDAWeb		a constant	Coord	inated	Data A	Analysis Web
+ FEEDBACK	CARLES (I I Y Y Y Y I I I I I I		man	www	1 ten ba

CDAWeb Data Explorer

Select start and stop times from which to GET or PLOT data:

 Use pre-defined start/stop times

 September 2005 Events 2005/09/07 00:00:00 2005/09/20 00:00:00

 Use custom start/stop times

 Start:
 2005/10/30 00:00:00

 (YYYY/MM/DD HH-MM:SS)

 Stop:
 2005/10/31 00:00:00

 (YYYY/MM/DD HH-MM:SS)

 Select an activity:

Int Data : select one or more variables from list below and press submit.

◯ List Data (ASCII): select one or more variables from list below and press submit. (Works best for <31 days)

O Download original CDFs : press submit button to retrieve list of files. (Max. 200 days - use FTP site for larger requests)

Create CDFs for download: select one or more variables from the list below and press submit.

Get CDFX - IDL GUI plotting/listing toolkit software. To be used with either the daily or "created" CDF files available above. 🗮

Plotting Options

Use coarse noise filtering to remove values outside 3 deviations from mean of all values in the plotted time interval.
 Double the Y-axis height for time-series and spectrogram plots.

Combine all time-series and spectrogram plots, for all requested datasets, into one plot file.

Submit Reset

Stariable parameters (required for Listing, Creating and Plotting data only)

WI_PM_3DP

Ion moments (computed on-board) @ 3 second (spin) resolution (version 3), PESA LOW, Wind 3DP - R. Lin (UC Berkeley)

Available dates: 1994/12/01 00:00:00 - 2005/10/30 23:59:36 (Continuous coverage not guaranteed - check the inventory graph for coverage)

- Proton number density
- Proton velocity vector (GSE)
- Residual Variance in Proton Velocity (6 components in instrument coords)
- Proton temperature
- Alpha number density
- Alpha velocity vector (GSE)
- Residual Variance in Alpha Velocity (6 components in instrument coords)
- Alpha temperature
- Energy range of moments computation
- Gap flag (0=no gap, 1=gap)
- Data quality flag (1=good, 0=bad)

[Wind 3DP home page at UCB (with plotting and digital data)]

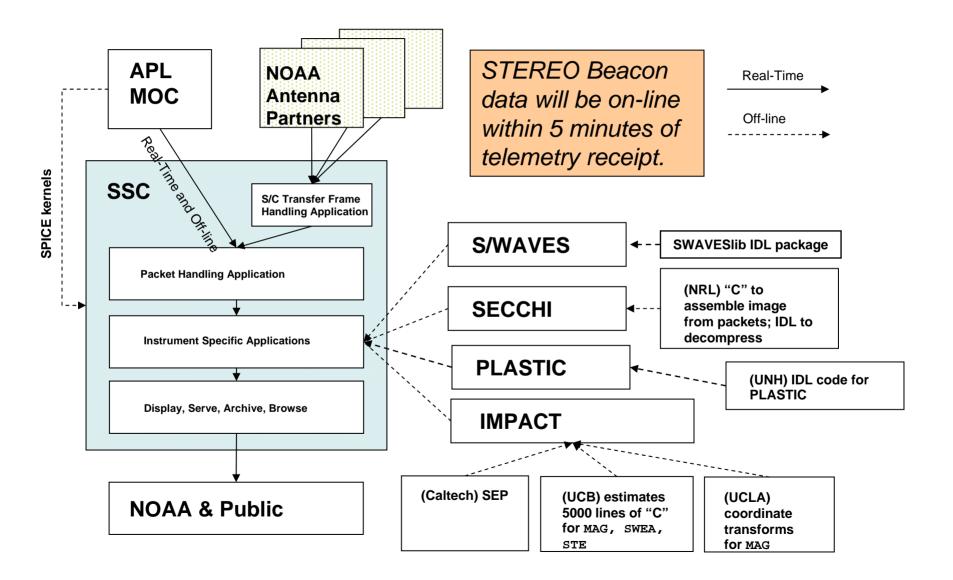
Submit Reset

CDAWeb+

- Primary access point for IMPACT Level 1 Data
- Ability to save previous plot layouts
- More flexibility with plot titles, axes, linestyles
- Export underlying CDF's to many other formats (ASCII, FITS, CDFML (XML))
- Tight integration with L1 spacecraft (ACE, WIND, etc.)
- Other possible functionalities? Do we want to include some derived quantities? Other plotting abilities not available in CDAWeb that would be appropriate for multi-spacecraft (time delays)? What about images? Mapping to solar images/movies?

SOAP Interface

- Simple Object Access Protocol is a web services messaging standard used increasingly by industry
- Allows local/custom applications to query and access data over the web
- Will conform to emerging VHO standard (which will interface with the VSO and other VxO's)
- Current model is the ACE Science Center using a modified version of the SPASE dictionary to define queries, but SPASE needs expanding to fit needs of particle data


Berkeley Static Data Plots

- In addition to CDAWeb-like browser, Berkeley intends to make static plots at different time intervals (daily, 3- and/or 7-day, and Carrington Rotation)
- Primarily intended for internal diagnostic use but will provide interface for the larger community
- HELIOS/IMP-8/ISEE-3 browser as proxies for STEREO/ACE at:

http://sprg.ssl.berkeley.edu/impact/data_browser.html

 Again, question of how best to utilize/visualize multi-spacecraft data

Space Weather Beacon Processing

Beacon Data Browser

- IMPACT responsible for "in situ-only" Beacon data browser (SSC will create an "integrated" browser as well)
- How best to display these data? Probably need input from NOAA and other end users.
- Do we make static or dynamic plots? If dynamic, should there be a standard default plot(s)? If so, what should it look like?
- Should we try to include ACE NRT data?

STEREO Beacon Products

STEREO Science Operations Plan