

Modeling interplanetary coronal mass ejections observed by STEREO and Wind

Christian Möstl^{1,2}

In collaboration with C. J. Farrugia³, A. Galvin³, H.K. Biernat^{1,2}

¹Space Research Institute, Austrian Academy of Sciences, Austria
²Institute of Physics, University of Graz, Austria
³Space Science Center and Dept. of Physics, University of New Hampshire, USA

MCs / MFRs / ICMEs

- Magnetic clouds strong **B**, smoothly rotating **B**, low Tp
- Magnetic flux ropes lack low Tp
- ICMEs B rotation not clear

- we concentrate on large scale MCs and MFRs
- susceptible for modeling -> additional parameters

Work so far - May 2007

20 Nov 2007

20 Nov 2007

STEREO 2008-2009

6

Aims & Data

Aims: Characterize parameters of MCs during solar minimum + the early ascending phase of solar cycle 24

- STEREO (1 Jan 2008 - 31 Oct 2009)

IMPACT: magnetic field (1 min) Level 2

http://aten.igpp.ucla.edu/forms/stereo/level2_plasma_and_magnetic_field.html

PLASTIC: proton N, V, T (1 min) Level 2 Version 7

ftp://cdaweb.gsfc.nasa.gov/pub/istp/stereo/behind/l2/plastic/1dmax/1min/

- WIND MFI and SWE from NSSDC (1 Jan 2008 - 31 Dec 2009)

ftp://nssdcftp.gsfc.nasa.gov/spacecraft_data/wind/mag/1min_ascii/ ftp://nssdcftp.gsfc.nasa.gov/spacecraft_data/wind/plasma_swe/swe_kp_unspike/

Selection criteria:

- Bmax > 6 nT ; duration >6 hours ; clear magnetic field rotation
- 18 MC/MFR events left out of ~50 ICMEs; 14 can be modeled completely

GS reconstruction

MFR June 6 2008 STB

MC 17 Dec 2008 Wind

MC 31 Dec 2008 STB

MC 5 July 2008 STA

ICME Feb 18 2009

Table

nr.	s/c	MC start	dur.	V_{HT}	B_0	$(heta,\phi)$	Н	D	p	$\Phi_t;\!\Phi_p$	I_z	SW
2008												
1	W	23-May 00:28	(10:08)	<mark>5</mark> 32	6.0	(38, 32)	R	0.097	0.04	0.04;0.19	104	F
2	в	06-Jun 22:39	(13:48)	392	15.4	(51, 278)	R	0.130	0.82	0.72;1.19	540	\mathbf{S}
3	A	05-Jul 10:39	(11:27)	335	8.6	(28, 168)	L	0.042	0.18	0.01;0.13	71	\mathbf{S}
4	W	17-Sep 04:58	(02:20)	418	7.2	(63, 48)	R	0.251	0.14	0.29;0.65	284	F
5	В	17-Oct 10:44	(17:38)	354	7.0	(-29, 154)	R	0.093	0.00	0.05; 0.20	141	SM
6	A	07-Nov 02:36	(21:17)	348	6.7	(4, 31)	L	0.094	0.07	0.03;0.14	81	\mathbf{S}
7	В	31-Dec 03:53	(15:46)	449	8.9	(2,91)	L	0.171	0.10	0.24;0.45	259	S
2009												
8	Α	26-Jan 12:39	(13:41)	377	11.1	(11, 288)	R	0.116	0.19	0.20;0.38	208	SM
9	W	12-Mar 02:18	(06:00)	349	10.5	(79, 311)	R	0.051	0.09	0.04; 0.15	66	FS
10	A	03-Jun 17:24	(22:54)	393	10.5	(12, 219)	R	0.143	0.00	0.17;0.40	320	BS
11	B	28-Sep 04:10	(07:39)	332	6.4	(-49, 163)	L	0.047	0.04	0.01;0.08	41	S
12	B	03-Oct 05:32	(12:20)	341	13.2	(-36, 133)	\mathbf{L}	0.084	0.04	0.06;0.20	126	\mathbf{S}
13	A	16-Oct 23:31	(19:00)	348	10.5	(36, 278)	R	0.157	0.30	0.46; 0.75	362	\mathbf{S}
14	W	12-Dec 21:58	(16:42)	275	7.7	(11, 84)	R	0.110	0.06	0.03;0.09	101	\mathbf{S}

MC occurence

Average values

Axis orientations

ÖAW

Difference GS/MV: 10° on average

Magnetic fluxes

Conclusions

- We modeled MCs/MFRs at 1 AU in 2008 and 2009
- 14 events (preliminary)
- Occurence rate of MCs quite constant
- Only ~1/3 of ICMEs can be modeled (only for these the field rotations are smooth and clear enough)
- Almost all embedded in slow solar wind < 500 km/s
- No obvious correlation between orientation and the HCS tilt
- Very slow velocities (300 km/s) at the end of 2009
- Magnetic fluxes overlap with those connected to C / M class flares
- Results probably useful for evolution of the solar global field and especially for comparisons with CME directions, orientations as inferred from STEREO/SECCHI (fitting with Sheeley method, kinematics, arrival times...)
- thanks!