The Propagation of a CME front in 3D

Shane A. Maloney, Jason P. Byrne, Peter T. Gallagher, R. T. James McAteer

STEREO SWG21, Trinity College Dublin

Shane Maloney, TCD

- Kinematics acceleration, deceleration
- Morphology pancaking, complex structure
- Which wins out, CME or solar wind?
- Space weather how important is drag?
- Other astrophysical problems involving flux tubes/magnetic bubbles in flows.

- Kinematics acceleration, deceleration
- Morphology pancaking, complex structure
- Which wins out, CME or solar wind?
- Space weather how important is drag?
- Other astrophysical problems involving flux tubes/magnetic bubbles in flows.

- Kinematics acceleration, deceleration
- Morphology pancaking, complex structure
- Which wins out, CME or solar wind?
- Space weather how important is drag?
- Other astrophysical problems involving flux tubes/magnetic bubbles in flows.

SWG21

Shane Maloney, TCD

- Kinematics acceleration, deceleration
- Morphology pancaking, complex structure
- Which wins out, CME or solar wind?
- Space weather how important is drag?
- Other astrophysical problems involving flux tubes/magnetic bubbles in flows.

- Kinematics acceleration, deceleration
- Morphology pancaking, complex structure
- Which wins out, CME or solar wind?
- Space weather how important is drag?
- Other astrophysical problems involving flux tubes/magnetic bubbles in flows.

CME equation of motion

• Generalised equation of motion for $\begin{array}{c} \text{CME} \\ \rho \frac{Dv}{Dt} = \vec{j} \times \vec{B} - \nabla P - \rho \vec{g} - F_D \\ \uparrow & \uparrow \end{array}$

Dominates low down (<10 R_{Sun})

Generally neglect

Dominates higher (>10 R_{Sun})

What is the form of F_D and why?

Shane Maloney, TCD

CME Drag

• Number of different forms have been proposed

• "Snow Plough" (Tappin, 2006)

$$\frac{dv_c}{dt} = \frac{\rho A}{M} (v_c - v_s)(v_c - v_s)$$

- aerodynamic drag (Cargill, 1996; Vršnak, 2001) $\frac{dv_c}{dt} = \frac{\rho A C_D}{M} (v_c v_s) |v_c v_s|$ $\frac{dv_c}{dt} = \gamma (v_c v_s)$
- Full MHD modelling
 - drag coefficient $(C_D) \sim 1$

Shane Maloney, TCD

Observations to constrain theory

- Need accurate, true kinematics to compare to theory.
- Have to use 3D reconstructions (other effects?)
 - New method and tie-pointing

(Byrne et al in prep; Maloney et al 2008)

• Parametrised drag model

 $\frac{dv_c}{dr} = \alpha R^{-\beta} \left(v_c - v_s \right)^c$

• Use Bootstrapping to gain estimate of errors, allowing us to say which form of drag fits best.

- Modified Running Difference
 - Accounts for stellar motion, suppress signal from stars (cross correlation between images).

SWG21

Ahead Shane Maloney, TCD

Behind

SWG21

Shane Maloney, TCD

12

SWG21

Shane Maloney, TCD

14

SWG21

HIL Behind Shane Maloney, TCD

HI1 Ahead

Kinematics

(C)

13-0ct

12-0ct

Kinematics

0

- Can derive true CME kinematics.
- They show some CMEs undergo significant acceleration in the Heliosphere.
 - Acceleration is consistent with drag.

Maloney et al 2010 in prep

Kinematics

Byrne et al in prep 2010

SWG21

Shane Maloney, TCD

18

Bootstrapping

- Bootstapping is part of a broader class of resampling methods (Efron, 1982).
- Statistical method to estimate a property of an approximately sampled distribution.
- Method
 - 1. Fit model and calculate residuals $\widehat{\epsilon_i} = y_i - \widehat{y_i}$ 3. Add randomly resampled residuals $y_i^* = y_i + \widehat{\epsilon_j}$ 5. Refit the boostrap response y_i^* 6. Repeat 2 and 3 many times (~10,000)
- Extract distributions for free parameters Shane Maloney, TCD SWG21

Shane Maloney, TCD

SWG21

20

Results

Shane Maloney, TCD

21

Results

Parameter	Bootstrap	Observation	Other studies		
Solar wind velocity (km/s)	560^{+109}_{-47}	530			
CME initial velocity (km/s)	246^{+100}_{-119}	260			
CME initial height (R _{Sun})	$6.7^{+2.3}_{-3.0}$	6.6			
α	$4.49^{+2.37}_{-3.21} \times 10^{-05}$		$1.16 \pm 0.12 \times 10^{-3}$ $22.5 \pm 2.5 \times 10^{-6}$		
β	$-1.97^{+1.16}_{-1.01}$		1.35 ± 0.4 2.24 ± 0.5		
C	$2.28^{+0.21}_{-0.31}$		l or 2		
ne Maloney, TCD SWG21					

Shane Maloney, TCD

Results

	Parameter	Bootstrap	Observation	Other studies	
	Solar wind velocity (km/s)	560^{+109}_{-47}	530		
	CME initial velocity (km/s)	246^{+100}_{-119}	260		
	CME initial height (R _{Sun})	$6.7^{+2.3}_{-3.0}$	6.6		
	α	$4.49^{+2.37}_{-3.21} \times 10^{-05}$		$ \begin{array}{r} 1.16 \pm 0.12 \times 10^{-3} \\ 22.5 \pm 2.5 \times 10^{-6} \end{array} $	
	β	$-1.97^{+1.16}_{-1.01}$		1.35 ± 0.4 2.24 ± 0.5	
	C	$2.28^{+0.21}_{-0.31}$		l or 2	
Shane Maloney, TCD SWG21					

CME arrival time

- Based on 3D reconstruction to $\sim 50 R_{Sun}$ we predicted an arrival time (at L1) of ~ 15 -Dec-2008 13:10 (const velocity)
- In-situ data show arrival time of ~16-Dec-2008 09:00
- Used 3D reconstruction to tightly constrain ENIL+cone inputs

- Results from ENIL gives the arrival time ~16-Dec-2008 08:09
- CME interacts with slow-speed solar wind ahead of it and slows down

Shane Maloney, TCD

CME arrival time

Shane Maloney, TCD

Conclusions

- CME are accelerated in Heliosphere
 - Can be close to the Sun $< 50 R_{Sun}$
- Complex, dynamic interaction between CME and solar wind effecting both kinematics and morphology
- As a result of complex interaction arrival time prediction hard.
- For 2008-Dec-12 CME aerodynamic drag is acting on the CME, accelerating it from 350 to 450 km/s

Shane Maloney, TCD

Fast solar wind source

Shane Maloney, TCD

In-situ data

Shane Maloney,

- Image segmentation:
 - Intensity Based
 - Multi-scale (Wavelets, Curvelets)
 - Morphological Operations
- Modified Running Difference
 - Accounts for stellar motion, suppress signal from stars (cross correlation between images).

Shane Maloney, TCD

DIPITON II OIII DAOR D (OI TOPTO T TOPOTO **G** Q Q

between images).

Shane Maloney, TCD

SWG21

28

- Image segmentation:
 - Intensity Based
 - Multi-scale (Wavelets, Curvelets)
 - Morphological Operations
- Modified Running Difference
 - Accounts for stellar motion, suppress signal from stars (cross correlation between images).

Shane Maloney, TCD

DISTIGIT IT OTTI DAGT D (OT ODD COT T CIGIOTOTI

between images).

Shane Maloney, TCD

 \bigcirc

- Image segmentation:
 - Intensity Based
 - Multi-scale (Wavelets, Curvelets)
 - Morphological Operations
- Modified Running Difference
 - Accounts for stellar motion, suppress signal from stars (cross correlation between images).

Shane Maloney, TCD

Image Proceeding

between images).

Shane Maloney, TCD