Small-scale evolution of coronal holes

Larisza D. Krista Peter T. Gallagher

Astrophysics Research Group Trinity College Dublin

Outline

- How do we detect coronal holes?
- Are there short-term changes in coronal holes?
 - How do we detect it?
 - What is the physical mechanism?
 - What effect does the quiet Sun have?
- What information can we get from short term CH evolution?
 - Diffusion coefficient
 - Magnetic reconnection rate

Coronal Holes

- Open magnetic field lines extending from photoshpere through Heliosphere
- Source of high-speed solar wind
- Density ~ half of quiet Sun
- Temperature ~ 1 MK
- Types: polar, isolated, transient
- Lifetime: days months
- Best visibility: X-ray, EUV

SOHO/EIT 3-May-2007 00:00 1000 800 600 400 200 0 200 400 600 800 1000

Trinity College Dublin

Small scale CH evolution

- Interchange reconnection along CH boundaries
 - Low number of large loops inside CHs
 - Could explain expansion of CHs
 - Explains rigid rotation of CHs

(based on Fisk & Zurbuchen, 2005) Larisza D. Krista

Trinity College Dublin

Automated coronal hole detection

Observations

- SOHO/EIT, STEREO/EUVI (195 A) and Hinode/XRT
- SOHO/MDI magnetograms differentiating coronal holes from filaments
- Local intensity thresholding technique
 Krista & Gallagher, Solar Physics, 2009

Trinity College Dublin

Resulting coronal hole maps

Larisza D. Krista

Coronal hole and its magnetic field

Trinity College Dublin

Coronal hole and its magnetic field

Trinity College Dublin

CH boundary tracking

- Transform rectangular coordinates to polar, average over integer degrees
- Determine boundary distances from the CH centroid for t₀ and t₁
- Determine the velocity of the boundary relocations

Trinity College Dublin

Trinity College Dublin

Velocity plots

Trinity College Dublin

Does differential rotation effect CH growth?

Differential rotation - constant supply of loops on East side of CH

Trinity College Dublin

Magnetic diffusion

Diffusion rate

(Wang, Sheeley & Lean 2000, Fisk & Schwardon 2001)

$$\frac{\partial B_r}{\partial t} = \kappa \nabla_s^2 B_r - \nabla \cdot (u_s B_r)$$

$$\kappa = \frac{(\delta h)^2}{2\delta t}$$
Observed relocation distances: dr_{max} ~ 40 Mm
 ~ 2 Mm ($\delta t \approx 6000 \text{ s}$)
At CH boundary $\kappa_{max} \approx 1.2 - 1.4 \times 10^{15} \text{ cm}^2 \text{ s}^{-1}$
< $\kappa > \approx 3.3 - 5.3 \times 10^{12} \text{ cm}^2 \text{ s}^{-1}$

Fisk & Schwadron 2001 : In CH: κ = 3.5 x 10¹³ cm² s⁻¹ In QS: κ = 1.6 x 10¹⁵ cm² s⁻¹

Trinity College Dublin

Conclusions

- New automated methods
 - Robust detection of CHs at multi-wavelengths
 - Detection of CH boundary displacements
- East-side directional preference in CH area growth
 Due to differential rotation supplying loops and enhancing interchange reconnection
- Magnetic field diffusion through interchange reconnection at CHs boundaries: 1.2 - 1.4 x 10¹⁵ cm² s⁻¹
- Magnetic reconnection rate determined from observations M_{max}≈0.008 - 0.013

Trinity College Dublin