$$
\begin{aligned}
& \text { MODEL-JIDEPENDEJTV VEDOCTIN (AND }
\end{aligned}
$$

Eduard Kontar1 and Manuela Temmer²

${ }^{1}$ University of Glasgow, UK 2University of Graz, Austria

Prologue...
"Acceleration errors are difficult..."
Angelos Vourlidas

Motivation - X-ray data

Ramaty High Energy
Solar Spectroscopic Imager(RHESSI)
e.g. spectral index (Kontar and MacKinnon, 2005)

Let us consider CME propagation....

2008 March 25, M1.7 flare/CME event observed with STEREO-B from (Temmer et al, ApJ, 2010)

Height - time measurements

Distance vs time for 2008 March 25, M1. 7 flare/CME event observed with STEREO-B from (Temmer et al, ApJ, 2010)

Two approaches to find velocity and acceleration of CMEs:

1) Forward fitting: to find the parameters of the model as a best fit to the original data
2) Model independent (no model assumed) inference of velocity and acceleration

University of Glasgow

Height - time measurements

Distance vs time for 2008 March 25, M1.7 flare/CME event observed with STEREO-B from (Temmer et al, ApJ, 2010)

Two approaches to find velocity and acceleration of CMEs:

1) Forward fitting: Io find the parameters-of the model as a best fit to the original data
2) Model independent (no model assumed) inference of velocity and acceleration

Let us assume that we have a analytical functions $h(t)$ over the finite time interval $\left(t_{0}, t_{N}\right)$, while we are given a dataset of height measurements:
$h_{i}, i=1 \ldots N$
for a number of times
$t_{i}, i=1 \ldots N$.
The dataset has a finite uncertainty of the
 measurements δh, so that

$$
h_{i}-h\left(t_{i}\right)<\delta h
$$

Now our problem is to find the best smooth representations of

$$
\begin{array}{cl}
v(t)=\mathrm{d} h(t) / d t \quad & (\text { velocity }) \\
a(t)=\mathrm{d}^{2} h(t) / d t^{2} & \text { (acceleration) }
\end{array}
$$

University of Glasgow

Derivative as an inverse problem

The problem of finding derivative can be written as the integral inversion problem (Groetsch, C. W. 1984, Hanke, M., \& Scherzer, O. 2001)

Indeed, the height at a given time is given by an integral

$$
h_{i}=h_{0}+\int_{t_{0}}^{t_{i}} v\left(t^{\prime}\right) d t^{\prime}
$$

we can re-write this equation in the matrix form

$$
\mathbf{h}-h_{0}=\mathbf{S v}
$$

where \mathbf{S} is the matrix representing our integral
\mathbf{h} is the data-vector given $\left[h_{1}, \ldots, h_{N}\right]$,
\mathbf{v} is the velocity-vector to be found $\left[v_{1}, \ldots, v_{M}\right]$,

In other words we are looking for a solution of the minimization problem

$$
\begin{equation*}
\left\|\mathbf{h}-h_{0}-\mathbf{S v}\right\|^{2}=\min \tag{1}
\end{equation*}
$$

where $\|\cdot\|^{2}$ is a norm defined as $\|\mathbf{h}\|^{2} \equiv \mathbf{h}^{T} \mathbf{h}$.
This problem [1] does not have a unique solution and additional constraints are needed (e.g. Berterro et al, 1985).

Using Tikhonov regularization technique (Tikhonov, 1963), our problem becomes:

$$
\begin{equation*}
\left\|\mathbf{h}-h_{0}-\mathbf{S v}\right\|^{2}+\lambda\|\mathbf{L v}\|^{2}=\mathbf{m i n} \tag{2}
\end{equation*}
$$

where \mathbf{L} is the matrix representation of constraint operator, and λ is a regularization constant.
Importantly, the problem [2] is well-behaved and has a unique solution.

What is constraint matrix L?

The derivative error calculated from noisy data set:
Derivative $\left|\frac{h_{i+1}-h_{i}}{\Delta t}-\frac{d h\left(t_{i}\right)}{d t}\right| \leq O\left(\Delta t+\frac{\delta h}{\Delta t}\right)$

$$
\left\{\begin{array}{l}
\begin{array}{l}
\text { We will look for a function } \mathrm{h}(\mathrm{t}) \text { close to } \\
\text { given data set so that } \\
\left\|\mathbf{h}-h_{0}-\mathbf{S v}\right\|^{2}=\|\delta h\|^{2}
\end{array}
\end{array}\right.
$$

While the second derivative of $h(t)$ or first derivative of $\mathrm{v}(\mathrm{t})$ has a minimum, the derivative error looks much better:

Therefore, following Hanke and Scherzer (2001) we can choose L=D ${ }_{1}$

Hence we can write an explicit solution of minimization problem, which minimizes the amplification of the errors in the resulting estimate for the derivative, i.e. velocity:

$$
\mathbf{v}_{\lambda}=\mathbf{R}\left(\mathbf{h}-h_{0}\right), \quad \text { where } \quad \mathbf{R}=\left(\mathbf{S}^{T} \mathbf{S}+\lambda \mathbf{D}_{\mathbf{1}}{ }^{T} \mathbf{D}_{\mathbf{1}}\right)^{-1} \mathbf{S}^{T}
$$

The only unknown parameter is λ, which can be determined requiring the finite difference between our solution and the original dataset

$$
\left\|\mathbf{h}-h_{0}-\mathbf{S} \mathbf{v}_{\lambda}\right\|^{2}=\alpha\|\delta \mathbf{h}\|^{2}
$$

Parameter α tells us about the errors (should be around 1 in case of Gaussian errors)

The horizontal and vertical errors

Let assume that we know the true solution of our linear inverse problem $v_{\text {true }}$, then we can write

$$
\mathbf{h}-h_{0}=\mathbf{S} \quad \mathbf{v}_{\text {true }}+\delta \mathbf{h}
$$

The regularized solution of our inverse problem is

$$
\mathbf{v}=\mathbf{R}\left(\mathbf{h}-h_{0}\right)
$$

The difference between the true solution and our solution can be written as

Simulated data: example I

Simulated data (no noise added but discrete data set)

Acceleration profile (error due to discrete data set is evident)

Normalised residuals

Simulated data: example II

Simulated data (realistic noise added)

Acceleration profile

Normalised residuals

Height-time data (Temmer et al, ApJ, 2010)

Velocity profile

Acceleration profile (Note change in acceleration profile)

University
of Glasgow

Regularized inversion gives us model-independent (without assumptions on functional shape) velocity and acceleration as a function of time.
=>provides us with horizontal and vertical error bars and hence gives us confidence range for velocity and acceleration.
\Rightarrow Regularized derivative is IDL based package and easy to use
\Rightarrow Can be applied not only to CME data but to EIT waves etc

