How massive is a CME? The greater accuracy offered by STEREO

Eoin Carley R.T. James McAteer, Peter T. Gallagher Astrophysics Research Group, TCD

Overview

Measuring CME masses

STEREO and reduced uncertainty

Some preliminary results

+ Conclusions

Why study mass?

 Mass is a particular property needed for the study of CME energetics and dynamics

$$P_{kinetic} = \frac{1}{2} \sum_{CME} m_i v_{cm}^2$$
Require mass
$$E_{potential} = \sum_{CME} \int_{R}^{R} \frac{GM_{sun}m_i}{r_i^2} dr_i$$

 The dynamics and energetics can give an understanding of the forces responsible for CME initiation and propagation

Also, CME models require accurate mass estimates

Measuring CME mass

- Use Thomson scattering theory and Van de Hulst-Minnaert coefficients
 - ⇒ Scattered brightness per electron at any point in solar atmosphere

-WL pixel brightness

$$m_{pixel} = \frac{B_{obs}}{B_e(\theta)} \times \frac{1.97 \times 10^{-24} g}{1000}$$
 (Vourlidas et al., 2000)
(Vourlidas et al., 2000)

Single electron brightness

 Scattered intensity depends on propagation angle of CME from plane of sky, θ

Measuring CME mass

- Base-difference image
 with pixel values of grams
- Any excess brightness is due to excess CME mass
- Simply sum over the CME or any other feature to obtain the mass

+ However...

The Uncertainty

• If there is only one viewpoint, angle θ is unknown

 Assumption: CME is directed along POS

• This assumption leads to a mass underestimation of up to 50% (Vourlidas et al, 2000)

 Projection effects is one of the biggest sources of error in CME mass estimations

The Uncertainty

Another big source of error is unknown extent of CME finite width i.e. CME is a 3-D structure
Assumption: All of CME mass lies on 2-D plane

Solid line: angular dependence of intensity of scattered light by an electron

Dashed line: Ratio of observed mass to actual mass as a function of angular width

(Vourlidas, Subramanian, Dere, Howard; 1999)

The Uncertainty

 Broadside events have a smaller depth along line of site and hence smaller uncertainty in mass

Broadside Width along LOS ~48° Axial Width along LOS ~78 °

(Chen et al. 2006)

12th December 2008 CME

- CME was directed on Sun-Earth line, STEREO A and B were separated by 86.6°
- Depth along line of sight is unknown
- Morphology similar to broadside fluxrope that is slightly inclined

CME Mass vs. Height for Ahead and Behind, COR1 and 2

CME mass vs. time

- 0 -200 mins: Rapid growth
- 200 mins onwards : Steady growth
- Mass approaches fixed value

How is the mass distributed throughout the CME?

- Front mass initially dominates
- Core appears at ~150 mins and grows rapidly
- After 400 mins core mass and front mass are equal

How energetic is the CME?

Conclusions

 Use of STEREO data reduces errors on mass estimates significantly

- +Plane-of-sky error removed
- Finite width error still exists
- + CME mass tends towards $(2.1\pm0.5) \times 10^{15}$ g
- Mechanical energy estimates are also subject to smaller uncertainties
- Kinetic and potential energies tends towards

✦ Potential energy 4.0 × 10³⁰ ergs

+ Kinetic energy 6.9×10^{29} ergs

 Mass and energy values are more reliable when using STEREO data