Overview of STEREO ICMEs during solar cycle 23 minimum

E.K.J. Kilpua ${ }^{1}$, L. Jian² J.G. Luhmann ${ }^{3}$, Y. Li ${ }^{3}$,C.T. Russell ${ }^{2}$, P. Schroeder ${ }^{3}$
${ }^{1}$ University of Helsinki, Division of geophysics and astronomy, Finland ${ }^{2}$ Institute of geophysics and Planetary Physics, UCLA , Los Angeles, CA ${ }^{3}$ Space Sciences Laboratory, University of California, Berkeley, CA

1. General properties of STEREO ICMEs
2. Multi-spacecraft ICME encounters

Data analysis

- ICMEs from January 2007 through October 2009
- Identified based on
- magnetic field signatures (enhanced magnetic field magnitude, low variance, organized behavior of magnetic field direction)
- counterstreaming suprathermal electrons
- low plasma temperature, plasma beta

- ICMEs: Jan 2007 - Jan 2009
- required: $\mathrm{B}_{\max }>5 \mathrm{nT}$, duration >3 hours
- total 41 ICMEs

Jul 07 to Jun 08: 0.35 events/month Aug 08 to Jan 09: 1.28 events/month

Averages:
${ }^{-B_{\text {max }}}: 10.1 \mathrm{nT}$

- width: 0.14 AU

Compare with previous minima
(Jian et al., 2006)

- $\mathrm{B}_{\text {max }}: 13.9 \mathrm{nT}$
- width: 0.27 AU

Monthly average of the daily Cactus CME rate, $\mathrm{AW}>50^{\circ}$

Kilpua et al., 2009, Annales
Geophysicae

Kilpua et al., 2009, Annales
Geophysicae

- CMEs deflecting from high latitude source regions add to the near ecliptic ICME rate?
- slow CMEs channeled to low latitudes?
- faint CMEs?
- decreased tilt of the heliospheric current sheet?

Smoothed sunspot number

January 2007 - October 2009

ICMEs with
maximum magnetic field $>8 \mathrm{nT}$ and
duration > 12 hours

Multi-spacecraft encounters
 low inclination magnetic clouds

typical ICME extent $\sim 50^{\circ}$ (e.g. Yashiro et al. 2004)

JAN. 5, 1978, 1400 UT
extent at least 30° in longitude

Multi-spacecraft encounters

 high inclination magnetic clouds

Crooker and Intrilligator, 1996
significantly distended cross-sections (aspect ratio 1:8).

Other multi-point studies before STEREO give cross-section aspect ratios 1:4-1:6.5 (Mulligan et al., 1999; Mulligan and Russell, 2001)

STEREO multi-spacecraft encounters

date	S/C	sep	inclination
May 22, 2007	B\&L1\&A?	9°	High
May 23, 2007	A\&L1	9°	High
Nov 19, 2007	B\&L1\&A?	41°	Low
Nov 25, 2007	B\&L1	44°	Low
Dec 30, 2007	B\&L1	44°	Low
Mar 8, 2008?	A\&L1	48°	Low

Density Ratios
Kilpua et al., 2010, submitted to JASTP
total perpendicular pressure profile
(Russell, Shinde and Jian, 2005; Jian et al. 2006)

May 2007, magnetic clouds

(Kilpua et al. 2009. Liu et al. 2008, Möstl et al. 2009, Li et al. 2009)

Grad-Shafranov reconstruction
Möstl et al. 2009, JGR\& Solar Physics
almost circular cross-sections (aspect ratio 1:1.5-1:2)

November 19-20, 2007

Farrugia et al. 2010

December 30, 2007 - January 1, 2008

STB, central pass through the flux rope

WIND, flanks of the same ICME
STB - WIND separation: 22°

Kilpua et al., 2010, submitted to JASTP

Summary

- despite the low solar activity several ICMEs have been identified in the solar wind
- connection between narrow CMEs and 'weak' ICMEs? (e.g Rouillard et al., 2009)
- increase in the ICME rate after mid 2008. Precedes the increases in the CME rate and in sunspot number
- cross-section shapes of perpendicular MCs vary from circular to highly distented. off-ecliptic observations: aspect ratio ~1:6 (Liu et al. 2006, Riley et al. 2006)
- ICMEs may extend several tens of degrees in longitude
- ICMEs cannot be forced in to a single, simple flux rope model
- refined methods needed to study the ICME structure + unique solar wind background
- flux rope signature disappears when a ICME is crossed far from the center

- early declining phase of cycle 24 ? Increased ICME rate and stronger ICMEs (e.g. Jian et al. 2006)
- Hopefully more multipoint ICME observations!

