Three Dimensional Reconstruction of an Earth-directed CME Front

Jason P. Byrne, Shane A. Maloney, R. T. James McAteer, Jose M. Refojo & Peter T. Gallagher

STEREO Science Working Group Trinity College Dublin March 2010

Funded by SFI's Research Frontiers Programme.

Motivation

What influences the trajectory of a CME in the magnetised solar atmosphere?

How do erupting magnetic fluxropes expand in the solar atmosphere?

What mechanisms govern the motion of CMEs in the Heliosphere?

$$\rho \frac{\vec{Dv}}{Dt} = \vec{j} \times \vec{B} - \nabla P - \rho \vec{g} - \frac{1}{2} \rho \vec{v}^2$$

STEREO illustration

Byrne et al. A&A 2009

12 Dec. 2008

Geometric Localization (Pizzo & Biesecker, 2004)

Geometric Localization (Pizzo & Biesecker, 2004)

Theorem:

Let T₁, T₂, T₃, T₄ be four given lines in the plane, such that no three of the T_j are parallel or have a common intersection point. Then there is an ellipse E which is tangent to each of the T_j.

(Horwitz, 1999)

Theorem:

Let T₁, T₂, T₃, T₄ be four given lines in the plane, such that no three of the T_j are parallel or have a common intersection point. Then there is an ellipse E which is tangent to each of the T_j.

(Horwitz, 1999)

12 Dec. 2008 CME

Three dimensional reconstruction of an Earth-directed CME front

Jason P. Byrne, Shane A. Maloney, R. T. James McAteer, Jose M. Refojo & Peter T. Gallagher

12 December 2008 08:05 (F Instrument: CORT

Sun

Three dimensional reconstruction of an Earth-directed CME front

Jason P. Byrne, Shane A. Maloney, R. T. James McAteer, Jose M. Refojo and Peter T. Gallagher

CME propagation:

Early acceleration phase.

Subsequent drag phase in the solar wind.

CME propagation:

Early acceleration phase.

Subsequent drag phase in the solar wind.

(Riley et al. ApJ 2006)

Conclusions

1. Acceleration in the low corona ~ $100ms^{-2} \pm 50ms^{-2}$

2. **Deflection** of CME front from high latitude into ecliptic. $\theta(R) = 68R^{-0.9}$

Travels non-radially along the non-potential magnetic field of the corona.

3. Angular width **expansion**.

 $\Delta\theta(R) = 26R^{0.2}$

Initial overpressure of the CME relative to the surrounding corona.

4. Drag dominated propagation in the solar wind $> 7 R_{Sun}$