Three Dimensional Reconstruction of an Earth-directed CME Front

Jason P. Byrne, Shane A. Maloney, R. T. James McAteer, Jose M. Refojo \& Peter T. Gallagher

STEREO Science Working Group
Trinity College Dublin
March 2010

Funded by SFl's Research Frontiers Programme.

STEREO
tyx crin o
ग̀TCHPC

Motivation

What influences the trajectory of a CME in the magnetised solar atmosphere?

How do erupting magnetic fluxropes expand in the solar atmosphere?

What mechanisms govern the motion of CMEs in the Heliosphere?

$$
\rho \frac{D \vec{v}}{D t}=\vec{j} \times \vec{B}-\nabla P-\rho \vec{g}-\frac{1}{2} \rho \vec{v}^{2}
$$

STEREO illustration

Finding the CME Front

Edge Detection

Finding the CME Front

Multiscale Analysis

Finding the CME Front

Byrne et al. A\&A 2009

Finding the CME Front

Finding the CME Front

Finding the CME Front

12 Dec. 2008

Stereoscopic Analysis

Stereoscopic Analysis

Geometric Localization (Pizzo \& Biesecker, 2004)

Stereoscopic Analysis

Geometric Localization (Pizzo \& Biesecker, 2004)

Stereoscopic Analysis

Theorem:
Let $T_{1}, T_{2}, T_{3}, T_{4}$ be four given lines in the plane, such that no three of the T_{j} are parallel or have a common intersection point. Then there is an ellipse E which is tangent to each of the T_{j}.
(Horwitz, 1999)

Stereoscopic Analysis

Theorem:
Let $T_{1}, T_{2}, T_{3}, T_{4}$ be four given lines in the plane, such that no three of the T_{j} are parallel or have a common intersection point. Then there is an ellipse E which is tangent to each of the T_{j}.
(Horwitz, 1999)

Stereoscopic Analysis

12 Dec. 2008 CME

Three dimensional reconstruction of an Earth-directed CME front

Jason P. Byrne, Shane A. Maloney, R. T. James McAteer, Jose M. Refojo \& Peter T. Gallagher

Three dimensional reconstruction of an Earth-directed CME front

Jason P. Byrne, Shane A. Maloney, R. T. James McAteer, Jose M. Refojo and Peter T. Gallagher

CME propagation:

Early acceleration phase.

Subsequent drag phase in the solar wind.

CME propagation:

Early acceleration phase.

Subsequent drag phase in the solar wind.

CME deflection:

$$
\theta(R)=68 R^{-0.9}
$$

Source region $\sim 55^{\circ} \mathrm{N}$ Tends toward the ecliptic.

CME propagation:

Early acceleration phase.

Subsequent drag phase in the solar wind.

CME propagation:

Early acceleration phase.

Subsequent drag phase in the solar wind.

CME deflection:

$\theta(R)=68 R^{-0.9}$
Source region $\sim 55^{\circ} \mathrm{N}$ Tends toward the ecliptic.

CME expansion:

Occulter effects are apparent.

CME propagation:

Early acceleration phase.

Subsequent drag phase in the solar wind.

CME deflection:

$\theta(R)=68 R^{-0.9}$
Source region ~ 55° Tends toward the ecliptic.

$$
\begin{aligned}
& \text { CME expansion: } \\
& \Delta \theta(R)=26 R^{0.2}
\end{aligned}
$$

Initial overpressure. Tends toward a constant.

Conclusions

1. Acceleration in the low corona $\sim 100 \mathrm{~ms}^{-2} \pm 50 \mathrm{~ms}^{-2}$
2. Deflection of CME front from high latitude into ecliptic.

$$
\theta(R)=68 R^{-0.9}
$$

Travels non-radially along the non-potential magnetic field of the corona.
3. Angular width expansion.

$$
\Delta \theta(R)=26 R^{0.2}
$$

Initial overpressure of the CME relative to the surrounding corona.
4. Drag dominated propagation in the solar wind $>7 \mathrm{R}_{\text {Sun }}$

