On 3D Reconstruction of Coronal Mass
 Ejections: Study of 31 August 2007 Event

M. Mierla ${ }^{1,2}$, B. Inhester ${ }^{3}$, L. Rodriguez ${ }^{2}$, A. Zhukov ${ }^{2}$, N. Srivastava ${ }^{4}$, S. Gissot ${ }^{2}$

1. Institute of Geodynamics of the Romanian Academy
2. Royal Observatory of Belgium
3. Max-Planck Institute for Solar System Research, Germany
4. Udaipur Solar Observatory, India

Contents

$\underset{\sim}{ }$ Introduction
$\neq 31$ August 2007 CME
$\&$ LCT + Triangulation Method - description

- constraints

Longitudinal Extension of the CME
Summary

Introduction

Since the launch of STEREO spacecraft in October 2006, several reconstruction techniques were successfully used to derive the direction of propagation and the true speed of coronal mass ejections (CMEs) at distances close to the Sun (coronagraphs fields of view - see the review by Mierla et al. 2010).

Attempts to reconstruct the CME 3D configuration (full geometric shape) have been done by:

- Using forward modelling (e.g. Thernisien et al. 2009)
(a priori known shape of the CME)
- Polarized ratio method (Moran et al. 2010, Mierla et al. 2009)
(weighted mean distance of the CME plasma density along each line of sight)

Introduction

The aim of this study:

Getting the full 3D geometry of a CME by using local correlation tracking method (to identify the same feature in STEREO/COR images) plus triangulation (to derive its 3D location).

Constraints:

1) the complexity of the CMEs morphologies (bubble-like shapes, twisted flux-ropes etc.);
2) the correct identification of the same feature in the two images;
3) optically thin plasma.

31 August 2007 CME

2007-08-31 20:47
2007-08

Data pre-processing

Co-align the images in STEREO mission plane:
\square same Sun center,
\square same pixel resolution
\square they are rotated such that epipolar north is at the top of the image

Inhester, 2006

Correlation Technique

The correlation coefficient $\rho_{\mathrm{X}, \mathrm{Y}}$ between two random variables X and Y with expected values μ_{X} and μ_{Y} and standard deviations σ_{X} and σ_{Y} is defined as:

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)}{\sigma_{X} \sigma_{Y}}
$$

where E is the expected value operator and cov means covariance.

The standard deviation is a measure of the dispersion of a collection of values:

$$
\sigma=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

Covariance provides a measure of the strength of the correlation between two or more sets of random variates:

$$
\operatorname{cov}(X, Y)=\sum_{i=1}^{N} \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{N} .
$$

Correlation Technique

Note that the images are co-aligned in STEREO mission plane
Program (Sam): bm_flow, imgA, imgB, neigh, lag_window, result_x, result_y, result $\rho_{\mathrm{X}, \mathrm{Y}}<0$: anti-correlation; $\rho_{\mathrm{X}, \mathrm{Y}} \sim 0$: no correlated; $\rho_{\mathrm{X}, \mathrm{Y}}>0.9$: high correlation

img B (Y)
\#\#\# \# \#

$\square=1 \mathrm{ag}$ or search window (for e.g. 256×3 pixels)
$=$ area where correlation is calculated (for e.g 11×11 pixels)

Correlation - constraints

1. The technique finds high correlation coefficients for noisy data (low intensity or low signal-to-noise pixels).

Solution: remove the noise
How?
Setting a threshold for each image.
2. For a smooth feature (along the epipolar line) the method finds more than a maxima in a search window

Solution: take the point in the search window closest to the center of mass.

Tie-point reconstruction

Inhester, 2006
use the program from solar soft (Bill): scc_measure.pro or depth_reconstruction.pro (Sam)

Longitudinal Extension of the CME (COR1)

Longitudinal Extension of the CME (COR2)

Longitudinal Extension of the CME

COR1
(31 August 2007, 21:30 UT)

COR2
(1 September 2007, 01:52 UT)

Summary

- The LCT-TP results show some scatter in the direction parallel to the line-of-sight.
- The spread should indicate the depth extent of the CME, if the correlation maxima are due to identical plasma fluctuations inside the CME.
- But, as it is a statistical approach some noise and scatter must be expected.
- Unfortunately, we have no means to check what the real spread of the CME is.
- We can check how good the LCT-TP method is by applying it to a model CME.

