Bootstrapping the Coronal Magnetic Field with STEREO

Markus Aschwanden
Anne Sandman and David Alexander
Lockheed Martin ATC - Solar \& Astrophysics Laboratory
Rice University, Houston, TX

STEREO Science Working Group 21, 22-26 March 2010
http://www.Imsal.com/~aschwand/ppt/2010_STEREO_Dublin.ppt

Outline of Talk:

1) Problem: Discrepancy between magnetogram-based magnetic field extrapolations and stereoscopically triangulated 3D loops
2) "The usual suspects"
3) Stereoscopic Triangulation of Coronal Loops
4) Bootstrapping method: Theory
5) Bootstrapping method: Forward-Fitting to Observations
6) Conclusions and Outlook

Potential field and constant-alpha extrapolations

Aschwanden et al. 1999

Alan Gary

Stereoscopically reconstructed 3D geometries can constrain theoretical magnetic field models. A computed potential field $B(x, y, z)$ based on SoHO/MDI magnetograms does not match EIT-traced loops observed in EUV (171, 195, 284 A), while a non-potential (linear) force-free model with $\mathrm{a}=0.045$ matches better.

Comparison of PTA Models \& Observation

Radial Stretching

Photosphere

Photosphere

Center Twist (60°)

Longitudinal Sheared

Active region loops reconstructed from STEREO/EUVI A+B (yellow) and calculated from MDI magnetograms and a force-free magnetic field model show significant differences, in particular for open field lines.

(courtesy of J.P.Wuelser)
Comparison of EUVI loops traced stereoscopically with "potential field source surface" (PFSS) model extrapolated from SoHO/MDI magnetogram: --> Note significantly different connectivities !

Figure 1. Series of co-aligned images of AR 10953 (with the same 10° gridlines drawn on all images for reference). (a) Time-averaged and logarithmically scaled Hinode/XRT soft X-ray image, and (b) with the best-fit Wh ${ }^{-}$model field lines overlaid. (c) STEREO-A/SECCHI-EUVI $171 \AA$ image. (d) Trajectories of loops, as viewed from the perspective of an observer located along the Sun-Earth line of sight and determined stereoscopically from contemporaneous pairs of images from the two STEREO spacecraft. (e) Same visualization as panel (d) but viewed from the side. The solid black cubes in panels (d) and (e) outline the full $320 \times 320 \times$ 256 pixel NLFFF computational domain, and the interior dotted black square outlines the base of the smaller $160 \times 160 \times 160$ pixel volume (covering most of the Hinode/SOT-SP scan area) used for the field line maps of Figure 2 and for the metrics in Table 1. The STEREO-loop points are colored blue if outside the NLFFF computational domain, or are colored according to their misalignment angle ϕ made with the field lines from the Wh^{-}solution. Yellow is indicative of $\phi<5^{\circ}$, red of $\phi>45^{\circ}$, with a continuous progression from yellow through orange to red for $5^{\circ}<\phi<45^{\circ}$. On the bottom face of the large cube is displayed the B_{z} map used during the NLFFF modeling, which includes higher resolution data from Hinode/SOT-SP embedded in $\mathrm{SOHO} / \mathrm{MDI}$ full-disk magnetogram data. The magnetogram images saturate at $\pm 1500 \mathrm{Mx} \mathrm{cm}^{-2}$.

DeRosa et al.

NLFFF Model Extrapolation Metrics ${ }^{\text {a }}$ for AR 10953

Model ${ }^{\text {b }}$	$E / E_{\text {pot }}{ }^{\text {c }}$	$\langle\mathrm{CW} \sin \theta\rangle^{\text {d }}$	$\langle \| f_{i}\| \rangle^{\mathrm{e}}\left(\times 10^{8}\right)$	$\langle\phi\rangle^{\text {f }}$
Pot	1.00	. \cdot	0.02	24°
Wh^{+}	1.03	0.24	7.4	24°
Tha	1.04	0.52	34.0	25°
Wh^{-}	1.18	0.16	1.9	27°
Val	1.04	0.26	71.0	28°
AmI^{-}	1.25	0.09	0.72	28°
Am2 ${ }^{-}$	1.22	0.12	1.7	28°
Can ${ }^{-}$	1.24	0.09	1.6	28°
Wie	1.08	0.46	20.0	32°
McT	1.15	0.37	15.0	38°
Rég ${ }^{-}$	$1.04{ }^{\text {g }}$	0.37	6.2	42°
Rég ${ }^{+}$	0.878	0.42	6.4	44°

The misalignment angle between STEREO loops and potential field code is $\alpha_{\text {mis }}=24^{\circ}$, and for various NLFFF codes is
$\alpha_{\text {mis }}=24^{0}-44^{0}$.
\rightarrow Potential field and NLFFF codes show a comparable discrepancy. The problems seems not to lie in the non-potentiality of the AR.

DeRosa et al. (2009)

2007-05-09: STEREO Loops and Unstretched Potential Field

2007-05-19: STEREO Loops and Unstretched Potential Field

AR 10953, 2007-Apr-30 23:30 UT

AR 10955, 2007-May-09 20:30 UT

AR 10956, 2007-May-19 12:40 UT

The average misalignment angle per loop (in 3D) ranges from ~20 deg for a very potential-like AR (2007 May 9) to ~ 40 deg for a flaring AR (2007 May 19).

The misaligments are commensurable for a Hinode FOV (DeRosa et al. 2009) and Full AR FOV (Sandman et al. 2009), for both potential field and nonlinear force-free (NLFF) field models.

"The Usual Suspects" :

Measurements of the net-Lorentz force in a force-free field using the virial theorem shows that the magnetic field becomes force free at heights of $h>400 \mathrm{~km}$ above the photosphere (Metcalf et al. 1995).

Vector magnetograms sampling the photosphere, which is dynamic and contains Lorentz forces and buoyancy forces, do not provide a force-free boundary condition (DeRosa et al. 2009).

Non-Force-Free Magnetic Field Boundary

Dynamic fibrils, mottles, spicules

Swedish 1-m Solar Telescope at La Palma, Spain

DePontieu et al. (2007, ApJ 655, 624)

High-resolution $\mathrm{H} \alpha$ images reveal for the first time, spatially and temporally resolved dynamic fibrils in active regions. These jet-like features are similar to mottles or spicules in the quiet-Sun. Their 3D structure can be reconstructed from the parabolic path trajectory of chromospheric shock waves, which can be reproduced by radiative MHD simulations (right frame).

Extrapolating the Magnetic Field into the Corona

Stereoscopic 3-D Reconstruction of Coronal Loops

3D Model -- original and reconstructed loops

Model viewed from 20 degrees

The method of two-spacecraft stereoscopy became feasible since the launch of STEREO A(head) and B(ehind) (Oct 2006).

Stereoscopic image pair and highpass filtering

Stereoscopic triangulation of EUVI triple-filter images

171 A
195 A
284 A

Aschwanden et al. (2008a,b; 2009)

3D Reconstruction of 100 loops ($\mathrm{T}=1.0-2.0 \mathrm{MK}$)

Bootstrapping Method of Coronal Magnetic Field

Stereoscopically triangulated loops provide the correct 3D field directions (in dimensionless units) along a set of loops:

$$
b(s)=\frac{B(s)}{|B(s)|}=\frac{\left[B_{x}(s), B_{y}(s), B_{z}(s)\right]}{|B(s)|}
$$

A physical solution of the magnetic field needs to fulfill Maxwell's equation of a divergence-free field:

$$
\nabla B=\left(\frac{\partial B_{x}}{\partial x}, \frac{\partial B_{y}}{\partial y}, \frac{\partial B_{z}}{\partial z}\right)=0
$$

Abelian properties of divergence-free field:

$$
\begin{aligned}
& \nabla(A+B)=\nabla A+\nabla B \\
& \nabla B=\nabla(\pm c b)= \pm c \bullet \nabla b
\end{aligned}
$$

Potential field of a unipolar magnetic charge:

$$
\begin{aligned}
& \Phi(r)=-\Phi_{0}\left(\frac{z_{0}}{r}\right), \\
& B_{r}(r)=\nabla \Phi(r)=B_{0}\left(\frac{z_{0}}{r}\right)^{2}, \\
& \Delta \Phi(r)=\nabla B(r)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Phi(r)}{\partial r}\right)=0 .
\end{aligned}
$$

A potential field $B(x, y, z)$ can be represented by a superposition of multiple unipolar magnetic charges:

$$
\begin{aligned}
& B(x)=\sum_{i=1}^{n} B_{i}(x)=\sum_{i=1}^{n} B_{i}\left(\frac{z_{i}}{r_{i}}\right)^{2} \frac{r_{i}}{\left|r_{i}\right|} \\
& r_{i}=\left[\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

This parameterized B-field (with $4 n$ parameters $B_{i}, x_{i}, y_{i}, z_{i}$) can be forward-fitted to STEREO field lines $b=B /|B|$.

Schematic Representation of the Parametric Transformation Analysis (PTA)

$>$ The "coronal" coordinate space points (\in field lines) $X[x, y, z]$ are transformed into $X^{\prime}\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$.
$>$ The magnetic field is transformed into another magnetic field solution: B ' $=\mathrm{J} \mathrm{B} / \operatorname{det}(\mathrm{J})$
> The new solution is divergent free: the transformed field has C^{2} continuity.

Uniqueness constraints:
(i) The photospheric magnetic vector field
(ii) The field satisfies the observed coronal loop structure
(iii) The magnetic field minimizes the Lorentz forces in the volume

PTA conserves initial model topology, i.e., does not employ reconnection

Observed MDI magnetogram rotated into same field-of-view as STEREO/A

Decomposition of MDI magnetogram into $\mathrm{n}=2000$ unipolar magnetic charges by fitting 2D gaussians and determining depth $z_{i}=w_{i}$ from width $w_{i}=F W H M / 2$ $\left(\rightarrow 8000\right.$ coefficients $\left.\mathrm{B}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$.

Misalignment angle definition

The misalignment angle $\alpha_{\text {mis }}$ is defined in 3D between the direction of a stereoscopically triangulated loop direction (x_{O}) and the field vector (x_{B}) of a theoretical magnetic field model, averaged over n positions along a loop.

$$
\begin{aligned}
& \alpha_{\text {mis }}(x, y, z)=\cos ^{-1}\left(\frac{B_{\text {theo }}(x, y, z) \bullet B_{\text {obs }}(x, y, z)}{\mid B_{\text {theo }}\left(x, y, z|\bullet| B_{\text {obs }}(x, y, z) \mid\right.}\right), \\
& \left\langle\alpha_{\text {mis }}(x, y, z)\right\rangle=\left[\frac{1}{n} \sum_{i=1}^{n} \alpha_{\text {mis }}^{2}(x, y, z)\right]^{1 / 2}
\end{aligned}
$$

Magnetic field : 200 unipolar charges $\leftrightarrow \rightarrow$

2000 unipolar charges The accuracy of the potential field model depends on the spatial and magnetic flux resolution The median misalignment angle reduces from 33° to 21°.

500 unipolar components extrapolation without fitting misalignment $\mathrm{a}=14.5+17.0$

500 unipolar components fitting 8 zones with variable B : misalignment $\mathrm{a}=12.5+15.9$

Comparison of misalignment angles For AR 10953 (2007 Apr 30, 23 UT)

PFSS code:

Sandman et al. 2009: a = $25+8$ deg
DeRosa et al. 2009: a = 24 deg
NLFFF codes:
DeRosa et al. 2009: a = 24... 44 deg
Unipolar Potential Field:

$$
\begin{array}{ll}
n=200 & a=19.3+21.2 \mathrm{deg} \\
n=500 & a=14.5+17.0 \mathrm{deg} \\
\mathrm{n}=1000 & a=14.7+13.2 \mathrm{deg} \\
\mathrm{n}=2000 & a=15.4+12.2 \mathrm{deg}
\end{array}
$$

Unipolar Potential Field Fitting:

$$
\begin{array}{ll}
n=200 & a=14.0+12.7 \mathrm{deg} \\
n=500 & a=12.5+15.9 \mathrm{deg} \\
n=1000 & a=14.4+9.8 \mathrm{deg}
\end{array}
$$

Dipole Potential Field Fitting:

$$
\begin{array}{ll}
n=5 & a=16.4+7.8 \mathrm{deg} \\
\mathrm{n}=10 & a=17.4+9.7 \mathrm{deg}
\end{array}
$$

500 unipolar components fitting 8 zones with variable B : misalignment $\mathrm{a}=12.5+15.9$

Unipolar potential field extrapolation and STEREO loops $A=12.5+15.9 \mathrm{deg}$

NLFFF extrapolation (Wheatland code Wh-)
and STEREO loops

Misalignment:
a<5 deg
$a>45 \mathrm{deg}$

Courtesy of Mike Wheatland and K D Leka
NLFFF (blue and red starting P and N polarity) Energy $E / E 0=1.15$ (Potential/nonpotential energy)

Two NLFFF solutions, starting from P and N boundaries \rightarrow significant electric currents.

Case 2: 2007 May 09

Unipolar potential fiels $(\mathrm{n}=500)$

(with forward-fitting of 8 zones with var B)

Case 3: 2007 May 19

Unipolar potential fiels ($\mathrm{n}=2000$)

(with forward-fitting of 8 zones with var B)

Case 4: 2007 Dec 11

Unipolar potential fiels $(n=500)$

(with torward-titting of 8 zones with var B)

PFSS code:
Sandman et al. 2009: a = 25 + 8 deg
DeRosa et al. 2009: a = 24 deg
NLFFF codes:
DeRosa et al. 2009: a = 24... 44 deg
Unipolar Potential Field:

$$
\begin{aligned}
& n=200 \\
& n=500 \\
& n=1000 \\
& n=2000
\end{aligned}
$$

$$
\mathrm{a}=19.3+21.2 \mathrm{deg}
$$

$$
\mathrm{a}=14.5+17.0 \mathrm{deg}
$$

$$
13.1+10.0
$$

$$
32.9+16.2
$$

$$
22.2+14.6
$$

$$
13.0+10.4
$$

$$
13.9+10.4
$$

$$
\mathrm{a}=15.4+12.2 \mathrm{deg} \quad 13.6+10.9
$$

$$
n=200
$$

$$
\mathrm{a}=14.0+12.7 \mathrm{deg}
$$

$$
13.6+9.4
$$

$$
23.1+13.0
$$

$$
18.8+9.6
$$

$$
\mathrm{a}=12.5+15.9 \mathrm{deg}
$$

$$
13.1+10.0
$$

$$
20.8+13.1
$$

$$
15.6+14.8
$$

$$
\mathrm{n}=1000
$$

$$
\mathrm{a}=14.4+9.8 \mathrm{deg}
$$

$$
13.4+10.1
$$

$$
21.0+16.0
$$

$$
15.7+13.4
$$

Dipole Potential Field Fitting:

$$
\begin{array}{lllll}
\mathrm{n}=5 & \mathrm{a}=16.4+7.8 \mathrm{deg} & 15.4+6.1 & 24.7+14.4 & 14.5+6.0 \\
\mathrm{n}=10 & \mathrm{a}=17.4+9.7 \mathrm{deg} & 12.8+4.3 & 22.7+10.7 & 12.4+4.6
\end{array}
$$

SECOND METHOD: Potential field of a dipole

$$
\begin{aligned}
& \Phi(r, \vartheta, \varphi)=-\left(\frac{z \bullet \cos \vartheta}{r^{2}}\right), m=\pi a^{2} I / c, \\
& B_{r}(r, \vartheta)=\nabla \Phi(r, \vartheta)=\left(B_{r}, B_{\vartheta}, B_{\varphi}\right)=\left(2 m \cos \vartheta / r^{3}, m \sin \vartheta / r^{3}, 0\right), \\
& \Delta \Phi(r, \vartheta)=\nabla B(r, \vartheta)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Phi(r, \vartheta)}{\partial r}\right)=0 .
\end{aligned}
$$

A potential field $B(x, y, z)$ can be represented by a superposition of multiple dipoles:

$$
\begin{aligned}
& B(x)=\sum_{i=1}^{n} B_{i}(x)=\sum_{i=1}^{n} \frac{3 n\left(n \bullet m_{i}\right)-m_{i}}{|x|^{3}}, \\
& r_{i}=\left[\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}\right]^{1 / 2}, \\
& n_{i}=\left[\left(x-x_{i}\right) / r,\left(y-y_{i}\right) / r,\left(z-z_{i}\right) / r\right], \\
& m_{i}=\left[m_{i} \cos \vartheta_{i} \cos \varphi_{i}, m_{i} \cos \vartheta_{i} \sin \varphi_{i}, m_{i} \sin \varphi_{i}\right]
\end{aligned}
$$

This parameterized B-field (with 6 n parameters $B_{i}, X_{i}, y_{i}, z_{i}, \varphi_{i}, U_{i}$) can be forward-fitted to STEREO field lines $\mathrm{b}=\mathrm{B} /|\mathrm{B}|$.

Unipolar vs. Dipole Potential Field Modeling

- A dipole is mathematically equivalent to 2 unipolar magnetic charges of opposite sign located at position $x=0, z=0$.
- Number of parameters: Dipole=6 ($m, x, y, z, \vartheta, \varphi$) - Unipolar charges=2 $x 4$ (m, x, y, z)
- Magnetic features with width (w) are burried in depth (z)=(-w)
- Small-scale magnetic features and sharp discontinuities require unipolar components burried in small depths.

Magnetic field model inferred from STEREO data:

- multiple dipoles ($\mathrm{N}=6$)
- potential field
- divergence free

Forward-fitting of a mutli-dipole field to 3-D STEREO loops yields a smaller misalignment than standard extrapolation of a potential field or Nonlinear force-free field from photospheric magnetograms.

Conclusion: It is not the presence of unaccounted currents or non-potentiality of the coronal magnetic field that causes a large misalignment to observed EUV loops, but rather the inadequacy of photospheric magnetograms (from non-force free regions).

Conclusions

1) The observations of stereoscopically triangulated 3D geometries of coronal loops in ARs exhibit a discrepancy to theoretical magnetic field models based on extrapolations of photospheric magnetograms, with a typical misalignment angle of $\mathrm{a}=19-36$ deg (PSFF) and $\mathrm{a}=24-44 \mathrm{deg}$ (NLFFF).
2)Hypothesis: The photospheric field is not force-free.
3)Magnetic potential field extrapolations using a parameterization with unipolar magnetic charges and dipoles yield a better agreement of a=14-26 deg, which seems to indicate that a higher spatial resolution (than PSFF) in potential field codes improves consistency with STEREO.
4)A bootstrapping method with forward-fitting of free parameters in (unipolar and dipole) potential field models improves agreement with STEREO further, $a=12-23 \mathrm{deg}$.
5)The remaining misalignment of $a=12-23$ deg could be due to:
(a) coalignment inaccuracy (MDI+EUVI) and insufficient spatial resolution
(b) neglect of projection effects, longitudinal field, and curvature in bootstrap model
(c) stereoscopic triangulation errors (check consistency of adjacent loops !)
(d) non-potentiality of magnetic field (requires NLFFF modeling)
