Solar Wind Stream Interface Evolution

K.D.C. Simunac, L.M. Kistler, A.B. Galvin, M.A. Lee,
M.A. Popecki, C. Farrugia, E. Moebius, L.M. Blush,
P. Bochsler, P. Wurz, B. Klecker,
R.F. Wimmer-Schweingruber, B. Thompson,
J.G. Luhmann, C.T. Russell, R.A. Howard

February 2009 STEREO SWG

What is a Stream Interface?

The light blue curve inside the CIR compression region marks the transition between slow and fast solar wind -- the stream interface (SI).

Pizzo, V. (1978), A three-dimensional model of corotating streams in the solar wind: 1. Theoretical foundations, *J. Geophys. Res.*, 83, 5563–5572.

in situ Stream Interface Example

- 1. Bulk Speed Increase
- 2. Density Drop
- 3. Temperature Increase

PLASTIC/AHEAD 10 minute averaged bulk proton data

Goals of Study

CIR compression regions are known to be associated with geomagnetic activity at Earth. If we want to predict the arrival time of a CIR at Earth after it has been observed *in situ* by STEREO/BEHIND (or a future monitor at L5), we need some idea of how much deviation from the ideal Parker spiral geometry can occur.

HCI latitude separation between Earth and STEREO/B can complicate matters further, but how much?

Why Stream Interfaces?

- I wanted a solar wind feature that was well defined to compare both between the two observatories, and from one Carrington rotation to the next.
- Their idealized geometry is simple.
- We have plenty of stream interface data to study since the Sun has been quiet.

Time goes from left to **Recurring Interfaces** right. Proton Bulk Speed [km/s] 800 AHEAD AHEAD BEHIND BEHIND AHEAD 600 -- BEHIND 400 200 12/01/2007 01/01/2008 11/01/2007 CR 2064 **CR 2063** Proton Bulk Speed [km/s] 800 600 400 200 063 2063.25 2063.5 2063.75 2064 2064.25 2064.5 2064.75 2065 **Back-mapped Carrington Number** Back-mapped Carrington Number

Back-mapped Carrington Number

Note: Only the proton bulk speed is shown here, but the density and temperature criteria for an interface are also satisfied.

Time goes
from right to
left.November - December 2007Time goes
from right to
left.5 - 6°HCI Latitude SeparationImage: Construction of the second se

EUVI AHEAD 195 Å Are there obvious changes on a shorter time scale?

Time goes from left to right.

SI I 2063 SECCHI EUVI 195 Å

QuickTimeTM and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime¹* and a TIFF (Uncompressed) decompressor are needed to see this picture.

SECCHI EUVI BEHIND 11/09/2007 16:26:10 UT. SECCHI EUVI AHEAD 11/12/2007 23:55:30 UT.

The Simplest Prediction Technique

Carrington Frame:

The SI is a static, ideal Parker spiral.

Observatories move clockwise.

Latitude Separation

Difference between Expected and Actual Arrival Time at STEREO/A

Latitude Separation

Difference between Expected and Actual Arrival Time at STEREO/A

Longitude Separation

Difference between Expected and Actual Arrival Time at STEREO/A

Difference between Expected and Actual Arrival Time at STEREO/A

Summary

- Time (Longitude) separation and latitude separation are both important.
- Up to longitude separations of about 20° all SIs arrived within 10 hours of their expected arrival time
- The largest differences between expected and actual arrival times correspond with the largest latitude separations
- 70% of the stream interfaces arrived early at STEREO/AHEAD.

Thank You.