Using STEREO/EUVI to Study Active Region Magnetic Fields

Anne Sandman (Rice/LMSAL) Markus Aschwanden, Jean-Pierre Wuelser, Marc DeRosa (LMSAL), David Alexander (Rice)

STEREO SWG #19 Pasadena, CA, 4 February 2009

Overview

- Objective
- Data set
- Procedure
- Findings and future work

Red: linear force-free field lines (MDI). Yellow: STEREO loops.

Feng et al. (2007, ApJ 671, L205)

Comparison of PTA Models & Observation

Radial Stretching

Development items to be included

- 1) Identify EIS/XRT loops
- 2) Employ vector magnetograms and NLFFF models
- Complete L_F minimization process
- 4) Use STEREO results in a 3D implementation

Center Twist (60°)

Longitudinal Sheared

Gary (2007)

Data Set

- Three active regions:
 - AR 10953: 23:00 UT April 30 2007.
 - AR 10955: 20:30 UT May 9 2007.
 - AR 10956: 12:40 UT May 19, 2007.
- EUVI images in 171, 195, and 284Å.
- High-pass filter and boxcar smoothing.

1. Trace loops in EUVI images.

- 2. Compute 3D potential magnetic field.
- 3. Calculate discrepancy between data and model.
- 4. Transform model magnetic field.
- 5. Recalculate misalignment angles.

Loop stereoscopy

1. Trace loops in EUVI images.

2. Compute 3D potential magnetic field.

- 3. Calculate discrepancy between data and model.
- 4. Transform model magnetic field.
- 5. Recalculate misalignment angles.

- 1. Trace loops in EUVI images.
- 2. Compute 3D potential magnetic field.
- **3.** Calculate discrepancy between data and model.
- 4. Transform model magnetic field.
- 5. Recalculate misalignment angles.

Visualizations

EW direction [pixel]

2007-05-19: STEREO Loops and Unstretched Potential Field

EUVI loops (yellow) and MDI/PFSS field lines (pink) reveal significantly different magnetic connectivities

(courtesy of J.P.Wuelser)

Findings:

- AR 10955 (9 May): best agreement with potential field.
- AR 10956 (19 May): worst agreement.
- NB: AR 10956 produced an eruption within 30 minutes of images.

- 1. Trace loops in EUVI images.
- 2. Compute 3D potential magnetic field.
- 3. Calculate discrepancy between data and model.
- 4. Transform model magnetic field.
- 5. Recalculate misalignment angles.

Radial Stretching

- Gary & Alexander (1999):
- Simple radial stretching improved model's agreement with observed loop structures.

Radial Stretching

- Preserves divergence-free condition.
- Injects currents.

$$B'_{r} = w(r, R_{\odot}, k)B_{r}$$
$$B'_{\theta} = v(r, R_{\odot}, k)B_{\theta}$$
$$B'_{\phi} = v(r, R_{\odot}, k)B_{\phi}$$
$$v(r) = \frac{h + R_{\odot}}{k [kh + R_{\odot}]} \qquad w(r) = \frac{[h + R_{\odot}]^{2}}{[kh + R_{\odot}]^{2}}$$

- 1. Trace loops in EUVI images.
- 2. Compute 3D potential magnetic field.
- 3. Calculate discrepancy between data and model.
- 4. Transform model magnetic field.
- 5. Recalculate misalignment angles.

Conclusions and Future Work

- Wide variation in loop-model agreement.
- No significant change with radial stretching.
- More versatile transformations?
- Need more appropriate magnetic field observations.
- Use EUVI data to "bootstrap" a better boundary condition.

Conclusions and Future Work

- Wide variation in loop-model agreement.
- No significant change with radial stretching.
- More versatile transformations?
- Need more appropriate magnetic field observations.
- Use EUVI data to "bootstrap" a better model.

Results of Radial Stretching

Active Region	N_{loops}	k	$\Delta \alpha ~(\mathrm{deg})$	$B_{avg} \pm \sigma \ (G)$
10953	200	0.5	26.1 ± 8.6	232.3 ± 316.5
		1.0	25.4 ± 9.0	196.0 ± 235.8
		2.0	33.5 ± 12.7	182.5 ± 217.4
10955	70	0.5	19.7 ± 5.0	211.7 ± 156.5
		1.0	19.4 ± 6.4	166.8 ± 109.6
		2.0	26.3 ± 6.6	160.6 ± 104.7
10956	100	0.5	38.8 ± 14.7	196.0 ± 171.5
		1.0	36.4 ± 13.7	158.7 ± 117.0
		2.0	38.3 ± 13.6	150.2 ± 104.4