In-situ Observations of CIRs on STEREO and ACE during 2007-2008

G. M. Mason, JHU/APL, Laurel, MD 20723
M. I. Desai, SWRI, San Antonio, TX
U. Mall and R. Bucik, MPS, Lindau, Germany
K. Simunac, Univ. New Hampshire
R. A. Leske, Caltech, Pasadena, CA

STEREO SWG #19 Pasadena, CA Feb-3-5, 2009

STEREO Ahead EUVI 195 2008-10-01 00:05:30

Solar Enegetic Particle (SEP) package -

(Part of the IMPACT suite, J. Luhmann, PI)

figures from Mewaldt et al., SSR, 136, 285, 2008

Suprathermal Ion Telescope - SIT:

instrument description: Mason et al., SSR, 136, 257, 2008.

Solar wind and magnetic field signatures of CIRs

Richardson et al. 1993, after Belcher & Davis 1971

top panel: plastic sw proton speed

middle panel: SIT He, for 189, 384, and 787 keV/nucleon

arrow marks selection threshold

figure shows events 15-21 in Table 1. Note increases starting on days 258, 261,284 and 291 are below the selection threshold and so are not in the table

bottom panel: SIT O for 67, 136, and 266 keV/nucleon

note high speed streams with no suprathermals around day 305, 315, and 330

4He intensity 0.189 MeV/n

CIP	Angle	SIT-A	ULEIS	SIT-B	III FIS peak	ULEIS	
±	(a)	StartÉ Stop	StartÉ Stop	StartÉ Stop	intensity (b)	spectral	Notes
"	(u)	Day of year	Day of year	Day of year	intensity (0)	index (c)	
2007							
1	0.6	29.0É31.0	29.5É31.5	29.0É31.0	5.3E+1±1.9E+0	2.56±0.01	d,e
2	0.8	44.0É46.0	44.0É46.0	44.0É46.0	1.3E+1±5.3E-1	2.28±0.01	d,e
3	1.2	58.5É61.0	58.5É61.0	58.5É61.0	2.0E+1±6.8E-1	2.44±0.01	d,e
4	1.8	72.0É75.0	72.0É75.0	72.0É75.0	3.3E+1±9.1E-1	1.72±0.01	d,e
5	3.2	91.0É94.0	91.0É94.0	91.0É94.0	2.2E+0±2.2E-1	3.36±0.03	
6	3.9	98.5É104.0	98.5É104.0	98.5É104.0	2.1E+0±2.1E-1	2.77±0.02	
7	7.4	127.5É1 33.0	127.5É1 33.0	127.5É1 33.0	5.9E+1±1.8E+0	2.46±0.01	d
8	8.8	138.0É1 42.0	138.0É1 42.0	138.0É1 42.0	6.7E+0±3.8E-1	2.00±0.01	d
9	9.7	144.0É1 47.0	144.0É1 47.0	144.0É1 47.0	3.4E+1±1.4E+0	2.77±0.01	
10	11.5	154.0É1 59.0	154.0É1 59.0	154.0É1 59.0	8.7E+0±4.4E-1	3.20±0.02	
11	18.6	192.0É1 95.0	192.0É1 95.0	191.5É1 95.5	5.2E+1±2.1E+0	3.07±0.01	
12	20.7	202.0É2 06.0	202.0É2 06.0	201.0É2 05.0	3.8E-1±9.0E-2	3.73±0.08	f
13	24.0	219.0É2 22.0	219.0É2 22.0	218.0É2 21.0	2.1E+0±2.1E-1	2.54±0.02	
14	28.3	239.0É2 47.0	238.0É2 46.0	237.5É2 46.0	2.1E+0±2.2E-1	1.44±0.03	
15	32.5	264.0É2 68.0	264.0É2 67.0	262.0É2 66.0	1.1E+1±4.8E-1	2.30±0.02	
16	33.7	271.5É2 74.0	270.5É2 74.0	269.5É2 72.0	2.6E+0±2.4E-1	2.08±0.02	
17	37.6	298.5É3 02.0	298.0É3 01.0	297.5É3 00.0	6.8E+0±4.1E-1	3.62±0.02	
18	39.9	318.0É 321.0	317.0É3 21.0	316.5É3 19.0	8.5E-1±1.3E-1	3.86±0.06	
19	40.2	321.5É3 23.5	321.5É3 23.5	320.5É3 24.0	6.4E-2±3.7E-2	3.76±0.34	
20	40.5	325.0É3 28.0	324.0É3 27.0	324.0É3 28.0	5.2E+1±2.4E+0	3.30±0.01	
21	42.1	346.0É3 49.0	344.0É3 47.0	343.0É3 46.0	4.0E+0±2.9E-1	3.05±0.02	
22	42.6	353.0É3 56.0	351.0É3 55.0	350.0É3 54.0	4.3E+1±1.8E+0	2.97±0.01	
2008							
23	43.7	6.0É15.0	4.5É15.0	3.5É13.0	1.3E+1+5.3E-1	1.88+0.01	
24	44.6	33.0É36.0	31.5É35.0	29.5É33.5	3.7E+0+2.8E-1	1.81+0.02	
25	45.0	42.5É45.0	41.0É45.0	40.0É43.0	6.6E+1+2.1E+0	2.46+0.01	
26	45.7	61.0É63.0	58.0É62.0	57.5É60.0	7.7E+0+4.1E-1	1.90+0.02	
27	46.1	69 5É73 0	69.0É71.0	67.0É70.0	2.4E+0+2.3E-1	3.05+0.04	
27	47.2	88.0É91.5	86 0É90 0	85.0É87.0	5.4E+0+3.5E-1	1.99 ± 0.02	
20	48.0	98.0É101.0	96 0É99 5	94 0É97 0	1 5E+0+1 8E-1	2.85 ± 0.04	
30	40.0	115 5É1 17 4	113 5É1 15 5	112 0É1 14 5	$6.2E_1+1.2E_1$	3.84+0.08	a
31	57.1	168 5É1 71 0	167.0É1.71.0	165 5É1 69 0	7 2E-1+1 2E-1	1 89+0.05	5
32	67.2	224 0É2 28 0	222.0É2.26.0	220.0É2.24.0	4.9E+1+2.1E+0	3.43 ± 0.01	
32	60.1	224.0E2 20.0	222.012 20.0 231.0É2.37.0	220.0E2 24.0 220.0É2 32.0	$2/E_{-}1\pm7.1E_{-}7$	3 45±0.01	h
33	71.0	254.012 56.0 250 5É2 54.0	231.0E2 57.0 247 5É2 50 5	229.002 52.0 245 5É2 49.0	$4.9E_{-1\pm1.1E_{-2}}$	2.43 ± 0.08	11
25	767	250.5E2 54.0	275 0É2 80 0	273.522 77.0	$1 1E + 1 \pm 4 0E 1$	1.76 ± 0.01	
26	/0./	217.3E2 02.0	273.0E2 80.0 202 5É2 05	272.062 77.0	$1.1E+1\pm4.5E-1$ 1 $AE+0\pm1.7E-1$	1.70 ± 0.01	
	0.00	JUJ.JEJ UY.U	JUZ.JEJ UJ.	277.UE3 UJ.U	$1.4C \pm U \pm 1.7C \pm 1$	2.49±0.04	1

Spectral forms: broken power law--

2008 Feb 10 CIR

SIT-B

Peak intensity:

• during ACE survey over recent solar maximum, peak He intensities (386 kev/n) did not correlate with the 160-910 keV/n spectral index

Power Law Spectral Index γ (0.16-0.91 MeV/n)

Event sizes:

• largest ones during 2007-08 as large as all but a few during recent solar activity maximum

• smaller events included in present survey might not have been seen earlier due to other activity

Phase of CIR:

 recurrent CIRs show origin at same or nearby coronal holes

• more complex pattern in early 2007

• gives way to 2 steam per rotation pattern from later 2007 through the first prt of 2008

• single feature seen in more recent data

Peak intensity:

• for 2007-2008 period the peak intensity does not depend on the solar longitude of the source regions -see widely different intensities from each region

• suggests that connection details are important even if the regions are fairly stable in production of energetic particles

Connection to CIRs:

• with source of particles beyond 1 AU, region of connection of spacecraft to outer region depends on solar wind speed

• simple corotating picture sometimes works, but often is more complex

Spectograms from -A and -B in spring 2007...quite similar

plot from R. Bucik, MPS

Aug. 2008 spectograms (~5 days corotation) ... some features shifted as expected, others not seen on both S/C

Stereo-B SECCHI 19.5nm image

Aug 7, 2007 00:06:32

(day 220)

10 degree heliographic grid overlay as seen from STEREO-B

Central meridian seen from STEREO-B is in blue; green as seen from Earth; red as seen from STEREO-A

Solar Weather Browser image

Stereo A is at 8.98° latitude; B at 3.78°; so the 5.2° difference is about one-half of a grid spacings. The hole at about E45 is probably the one seen by STEREO-B on day 224-26, and was probably missed by STEREO-A since it's trace is about 5°, north of B, a size shown by the double headed arrow at E5

Difference between SIT-A and SIT-B spectral index for He vs. heliographic latitude difference between the two spacecraft. The correlation coefficient between the two quantities is 0.62, which has a <0.1% chance of arising from unrelated variables (n=36).

"Dropout events" ---

• in several CIRs, particle intensity increases show a decrease at all energies, followed by a recovery that is also independent of energy

- these decreases correlate reasonably well with changes in solar wind speed
- particle energy spectra are similar before and after the droput, although intensities may change
- these features suggest that connection to the acceleration region beyond 1 AU is responsible for the dropouts -- not temporal changes in the CIRs

Comparison of 2008-2008 with 1996-1997 solar minimum period

Peak He intensity (/s cm² sr MeV/nucleon)

Wind SWE proton speed (blue) from kp data; STEP He5/1.6 -- division by 1.6 to adjust energy window to correpond approximately (20%) to ACE 386 keV/n channel; Wind data blanked out for R<25Re; for solar activity days 1997/308.0-318.0, and for interplanetary shock event on 1997/326 (ACE disturbance list)

Summary --

• many fast solar wind streams and CIRs observed in 2007-2008, but not all streams produced CIRs

• spectral forms similar to earlier surveys; much lower intensities at ~few MeV/n compared to active period

• CIRs observed sequentially from -B to -A, but not always seen; energetic particle intensity pattern did not corotate rigidly, probably due to magnetic connection effects to the CIR beyond 1 AU

• for 1994-2008 the most intense CIRs were during solar active periods, but cannot pinpoint simple cause for this

• 2007-2008 period had much better defined high speed solar wind streams than prior solar minimum in 1996-1997, and many more CIRs

• size distribution of CIRs shows a much sharper cutoff than 10 MeV SEP protons from GOES

 about 25% of CIRs show "dropouts" for a day or so apparently when connection to acceleration region beyond 1 AU changes

• some of the complex features of the CIRs appear to be due to relatively small coronal hole solar sources, wherein the different heliolatitude traces of STEREO-B, -A, and ACE played a significant role

(survey submitted to Solar Physics STEREO special issue)