# Numerical Simulations of STEREO ICMEs

D. Odstrcil<sup>1,2</sup> and A. Thernisien<sup>3</sup>

<sup>1</sup>University of Colorado/CIRES, Boulder, CO <sup>2</sup>NOAA/Space Weather Prediction Center, Boulder, CO <sup>3</sup>Naval Research Laboratory, Washington, DC



STEREO-SWG Workshop, Pasadena, CA, February 3-5, 2009

### Simulation of Heliospheric Disturbances – Cone Model



#### April/May, 1998 CME Events

#### **Using Cone Models**



- observationally based
- simple specification
- numerically robust
- more accurate than empirical formulae
- global context for transient and background structures
- interplanetary shocks and IMF line connectivity

#### MINUS

- absence of internal magnetic structure
- initial effect on surrounding solar wind
- reverse shock
- shock stand-off distance





# Eruptive Flux Rope (EFR) Model

#### Axial view





Front view



Chen, 1996; Krall et al., 2000; Krall and Chen, 2004; Xie et al., 2008

Broadside view



12 - 31

01-01

01-02

01-03

TIME

01-04

ANGLE

8-10-01708:39:3

01 - 06

01-05

# ICME – Hydrodynamic Rope Model



- Thernisien et al. (2008) fitting STEREO coronagraph observations

# Launching the Hydrodynamic Rope Model



- Self-similarity achieved by linear decrease of the speed
- Leg-structures may last few days

#### 2007 December 31 CME



#### 2008 January 2 CME



#### 2008 February 4 CME



N90

S90

#### 2008 April 26 CME



N90

S90

#### 2008 May 17 CME



#### 2008 June 2 CME



#### 2007 December 31 CME – Cone Model



#### 2007 December 31 CME – Rope Model



### 2008 January 2 CME – Cone Model



# 2008 January 2 CME – Rope Model



#### 2008 February 4 CME - Cone Model



#### 2008 February 4 CME – Rope Model



# 2008 April 26 CME – Cone Model



# 2008 April 26 CME – Rope Model



# 2008 May 17 CME - Cone Model



# 2008 May 17 CME - Rope Model



# 2008 June 2 CME – Cone Model



### 2008 June 2 CME – Rope Model



# 2007 December 31 CME – Cone Model



07dec31/480x60x180.a2c1.4-mcp1um1mnd-1.g15q0d4

# 2007 December 31 CME – Rope Model



# 2008 January 2 CME – Cone Model



# 2008 January 2 CME – Rope Model



08jan02/480x60x180.a2r1.4-mcp1ua2mnd-1.g15q0d4

# 2008 February 4 CME - Cone Model



08feb04/480x60x180.a2c1.4-mcp1ua2mnd-1.g15q0d4

# 2008 February 4 CME - Rope Model



08feb04/480x60x180.a2r1.4-mcp1ua2mnd-1.g15q0d4

# 2008 April 26 CME – Cone Model



08apr26/480x60x180.gong-2069-a2b2-sa4.4-mcp1ua2mnd-1.g15q0d4

# 2008 April 26 CME – Rope Model



08apr26/480x60x180.gong-2069-a2b2-ea4.4-mcp1ua2mnd-1.g15q0d4

# 2008 May 17 CME - Cone Model



# 2008 May 17 CME - Rope Model



08may17/480x60x180.gong-2070-a2b2-ea4.4-mcp1ua2mnd-1.g15q0d4

# 2008 June 2 CME – Cone Model



# 2008 June 2 CME – Rope Model



#### In-Situ Observations and Predictions ( work in progress )

| CME        | STEREO-B |      |      | ACE |      |      | STEREO-A |      |      |
|------------|----------|------|------|-----|------|------|----------|------|------|
| event      | obs      | cone | rope | obs | cone | rope | obs      | cone | rope |
| 2007-12-31 | 0        | 0    | 0    | 0   | 0    | 0    | 0        | 0    | 0    |
| 2008-01-02 | 0        | S+e  | 0    | 0   | 0    | 0    | 0        | 0    | 0    |
| 2008-02-04 | ?        | S+E  | S+e  | 0   | S    | 0    | 0        | 0    | 0    |
| 2008-04-26 | S+E      | S+E  | S+E  | 0   | S+e  | 0    | 0        | 0    | 0    |
| 2008-05-17 | 0        | S+E  | S    | 0   | S    | 0    | ?        | 0    | 0    |
| 2008-06-02 | S+E      | Е    | Е    | 0   | е    | 0    | 0        | 0    | 0    |

Disk space requirements:

- IS GBytes/event 6-day period, 2-hour cadence
- 8 Mbytes/event animations & temporal profiles

# Conclusions

 Interpretation of multi-spacecraft heliospheric observations and 3D reconstruction of structures observed by STEREO heliospheric imagers is challenging:

- the same white-light intensity can be produced by different CME parts;

- the same CME parts can be observed with different white-light intensities.

- Numerical simulations can provide:
  - provide global context and hints what can and cannot be observed;
  - missing quantities to interpret observations;
  - predict arrival of disturbances to different locations.

We have developed a hybrid modeling system for simulation of corotating and transient heliospheric disturbances. This system can serve as a practical and efficient solution until better near-Sun observations and more sophisticated CME models become available. The main advantage of our approach is robust, fast, event-by-event simulation.

 Results from ICMEs simulated so far suggest that the rope model provides much better match with remote and in-situ observations than the cone model does with a circular cross section.

#### BACKUP

#### 2007 December 31 CME – Cone Model



#### 2007 December 31 CME – Rope Model



### 2008 January 2 CME – Cone Model



# 2008 January 2 CME – Rope Model



#### 2008 February 4 CME - Cone Model



#### 2008 February 4 CME – Rope Model



# 2008 April 26 CME – Cone Model



# 2008 April 26 CME – Rope Model



# 2008 May 17 CME - Cone Model



# 2008 May 17 CME - Rope Model



#### 2008 June 2 CME – Cone Model



#### 2008 June 2 CME – Rope Model

