STEREO/PLASTIC: In Situ Observations of Proton Entropy Enhancements

K.D.C. Simunac and
The STEREO/PLASTIC Team
April, 2008
Observatoire de Paris, Meudon

Outline

- Relationship between solar wind speed and proton entropy
- Multi-spacecraft observations: Do features in the solar wind really have Parker Spiral geometry? (A test of the well-known CIR schematic cartoon.)
- Results and On-going Work

Speed and Entropy

Speed and Entropy

Conceptual Picture and In Situ Data (STEREO/PLASTIC-A, May 2007)

05/15/07

05/13/07

05/05/07

05/07/07

05/09/07

05/11/07

More In Situ Data

Geometry Study with Multiple Spacecraft Observations

Methodology

Parker spirals are fit to the increase (or decrease) in entropy to determine effective propagation speeds.

$$v_{effective} = \frac{\Omega_{sun}(R_B - R_A)}{\varphi_B - \varphi_A - \Omega_{sun}t}$$

 Ω_{sun} = angular speed of Sun

 R_A, R_B = orbital radii

 φ_A, φ_B = longitude (HCI)

t = difference in arrival time

Schematic Cartoon: Time = 0

Schematic Cartoon: Time = t

What do we expect?

- Propagation speed of entropy increase (Stream Interface) will be bounded by local minimum solar wind speed.
- Entropy decrease will have greater curvature (slower propagation speed) as plasma has expanded into the rarefaction region.
- If entropy transitions really follow Parker Spiral geometry, we should be able to calculate the same effective speeds using data from either one of the STEREO observatories and WIND/SWE or both STEREO A and B.

Slow-to-Fast Stream Interface Effective Speeds (Entropy Increase)

*Error bars assume uncertainty of ± 30 minutes.

Fast-to-Slow Transition Effective Speeds (Entropy Drop)

2007 month/day

^{*}Error bars assume uncertainty of ± 6 hours.

Fast-to-Slow Effective Speeds with WIND/SWE

data courtesy of K.W. Ogilvie, A.J. Lazarus, and M.R. Aellig

^{*}Error bars assume uncertainty of ± 2 hours.

Summary

- The average slow-to-fast SI effective propagation speed is 330 km/s -- or 53°garden hose angle at 1 AU.
- The effective speed of the slow-to-fast SI is sometimes LESS than the local minimum speed -this was NOT expected!
- The average fast-to-slow interface effective speed is 215 km/s -- or 63°garden hose angle at 1 AU.
- In most cases, effective propagation speed of the entropy drop agrees (within the error bars) between the two STEREO observatories and WIND/SWE.

ENLIL Model versus A Rough Sketch of My Results

ENLIL CR #2056

My Result CR #2056

On-going Work

- Extending study to cover more entropy transitions.
- Back-mapping of streams to see if slower than expected stream interface propagation speed makes sense.

Ballistic Back-mapping

Mapped Carrington Number (March 2007)

Mapped Carrington Number (October 2007)

Slow-to-Fast Stream Interface Effective Speeds (Entropy Increase)

*Error bars assume uncertainty of ± 30 minutes.

Slow-to-Fast Interface Effective Speeds (Extended)

^{*}Error bars assume uncertainty of ± 30 minutes.

Thank You

The STEREO PLASTIC Team

- University of New Hampshire
- University of Bern, Switzerland
- Max Planck Institute for Extraterrestrial Physics, Garching, Germany
- University of Kiel, Germany
- Goddard Space Flight Center

Stream Interface: Slow to Fast Transition

