

On Combining White Light Images & Radio Data

Angelos Vourlidas SECCHI Mission Scientist NRL

Summary

• Contributions of Radio Observations:

- Accurate timing of eruption initiation and development.
- Derivation of physical parameters in the eruptive structures (when thermal).
- Positional information on Type-II (shocks) sources.
- Identification of electron acceleration sites.
- Tracking the CME evolution from birth to Earth.
- Discovery of precursors to solar eruptions.

Radio Type-II Emissions and CMEs

1. Type-II emissions remain unreliable proxies of solar eruptions.

- •90% of EUV waves are associated with metric Type-IIs (Klassen et al. 2000).
- •But EUV waves are better correlated to CMEs (Biesecker et al. 2002).
- •Type-IIs are blast waves (30%), CME-driven (30%) or behind CME (30%) (Classen & Aurass 2002).

2. A possible new technique for joint Type-II/LASCO data analysis.

•Consistency between LASCO densities and Type-II profiles can pinpoint the CME <u>launch time</u>, <u>position</u> <u>angle</u> and type-II <u>source</u> region (Reiner et al. 2002).

Radio Spectra of CMEs

1. Continuous Spectral Coverage of Radio Solar Emissions.

Establish the flare/CME/Type-II temporal relation.
Multiple Type-II sources.
Evidence for shock-accelerated electrons.

Radio Imaging of CMEs

6. IPS Mapping of CMEs.

ORT (327MHz)

(Manoharan et al. 2001)

•Follow the CME evolution in IP space.

Radio Imaging of CMEs

4. Image directly radio CME loops for the first time.

(Bastian et al. 2001)

SECCHI «

Image fine-scale CME structures. Derive physical parameters: B_{CME} ~0.1-few G, E ~ 0.5-5MeV, n_{th} ~10⁷ cm⁻³

Radio Precursors of CMEs

1. Drifting continuum sources may signal the birth of the CME.

2. The role of Noise Storms remains controversial.

Some NS changes correlate with CME (Chertok et al. 2001).
NS starts before CME (Ramesh & Sundaram, 2001) or after CME (Willson, 1998).

•More work is needed to establish reliable radio precursors for CMES.

Coordination Issues

Need to add or coordinate:

- With radio GBOs to provide spectra on a regular basis (extent the S/WAVES spectrum to solar corona).
- With imaging interferometers to provide images.
 - Nancay RH is already collaborating
 - Gauribidanur RH should be added.
- With IPS instruments to provide continuous coverage of IP space
 - EISCAT is not IP-dedicated, time allocation is a problem
 - MEXART opens officially next month (12/05)
 - Ooty has manpower problems?

Radio Data + CME Catalog

Need to add or coordinate:

- More ground-based radio spectra to extent the S/WAVES spectrum to solar corona
- Gauribidanur images at 109MHz.

IPS

- Indirect maps of CME
- Possibility of continuous coverage (EISCAT?, STEL, Ooty, MEXART)
- Data complimentary to coronagraph data (Ne along LOS, speed of solar wind)

14 July 2000 CME : Height-Time Plot 2000 200 E (kms^{-1}) Heliocentric Distance Speed 1000 NRH N-W LASCO C3 f-o-v 100 LASCO C3-West STEL IPS Δ _ STEL IPS-West - Ooty IPS п STEL IPS-East 600 ★ — SOHO SW data Ooty IPS-West Ooty IPS-East 300 10 100 - SOHO SW data 08:00 16:00 24:00 08:00 16:00 24:00 Heliocentric Distance (R_o) UT (14 & 15 July 2000)

Manoharan et al (2002)

Radio Imaging of CMEs

2. Identify the shock at the CME front.

(Maia et al. 2000)

3. Identify sources of Type-II (shock) emission behind the CME front.

Why combine radio + WL images?

