Initialization of Numerical Models

Remote solar observations of the photospheric magnetic field

Remote coronal observations of the white-light scattered on density structures

CME Cone Model

Observational evidence:

- CME expands self-similarly
- Angular extent is constant

Conceptual model:

 CME as a shell-like region of enhanced density

[Howard et al, 1982; Fisher & Munro, 1984]

fm=050600 r=620 (cn=00 (cn=1/0) (ct=3/0)	Bree-120241 (~15.8 Sara-49 Sara-120 Val-202	

Fitting of halo CMEs:

- Various authors [*Zhao*,
- Liu, Michalek, Xie, etc]
- Weak and fuzzy images
- Cannot see "beyond"
- STEREO will significantly improve accuracy

Application of the CME Cone Model

12 May 1997

21 April 2002

24 August 2002

The heliospheric simulations may provide a global context of transient disturbances within a co-rotating, structured solar wind and they can serve as an intermediate solution until more sophisticated CME models become available.

Evolution of Parameters at Earth – Case A

Poorly defined shock and its stand-off distance from the ejecta

Evolution of Parameters at Earth – Case B

Accurate locations of stream boundaries and their rapid displacements are important for ICME properties at Earth

Effect of Fast-Stream Evolution

Case A

Case B

Earth : Interaction region followed by shock and CME (*not observed*)

Earth : Shock and CME (observed but shock front is radial)

Effect of Fast-Stream Evolution

[WSA maps – Nick Arge]

Case A

Case B

Earth : Interaction region followed by shock and CME (*not observed*)

Earth : Shock and CME (observed but shock front is radial)

CMEs Cone Model Parameters

	Date	Time	Lat (deg)	Lon (deg)	Width (deg)	Speed (km/s)
CME-1	1998-04-29	21:25	N09	E04	52 111	953 1134 1374
CME-2	1998-05-01	07:36	S05	E04	54 40	847 1427 585
CME-3	1998-05-02	14:09	N02	W06	57 39	484 1612 542
CME-4	1998-05-02	19:55	N16	E15	53 sym	698 <mark>sym</mark> 938

CMEs fitted by: Liu (2005), Michalek (2003) and linear POS fit (CME list)

Magnetic Cloud and Fast Stream

Increasing Accuracy of Cone Model Specification

Geometric Localization of STEREO CMEs

[Pizzo and Biesecker, 2005]

Improving Validation of Cone Models – A

Improving Validation of Cone Models – B

Multi-Perspective Remote Observations – A

Multi-Perspective Remote Observations – B

May 12, 1997 Halo CME

Case A Case B

Fast-Stream Evolution

Ambient state before the CME launch

Disturbed state during the CME launch

Ambient state after the CME launch

Cone Model Features

	Feature
Plus	 observationally based (main causal geo-effectivity link) simple specification (with direct control of consequences) numerically robust (beyond supercritical point) slightly more accurate than empirical formulae (realistic solar wind) global context (transient and background structures) interplanetary shocks and IMF line connectivity (shock-observer)
Minus	 absence of internal magnetic structure initial effect on surrounding solar wind reverse shock shock stand-off distance internal profile of parameters

<u>Cone models</u> – Intermediate solution until more realistic coronal models will enable routine application

Specification of Parameters

	Observation-Based Parameters	Free Parameters
Cone	Iatitude of cone axis	cone mass density
Model	Iongitude of cone axis	cone temperature
	radius of cone	 (profile of parameters)
	cone speed	
	time when cone at the inner	
	heliospheric boundary	
Flux	 (orientation of flux rope axis) 	separation of legs
Rope		width of legs
		winding angle
		field strength
		 (profile of parameters)
		 (blending with external field)

<u>Too many free parameters</u> – while observed events may be reconstructed from case to case, their initialization cannot be automatized

Observed Ejecta Signatures and Shock Stand-off Interval

Signature	Duration (h)	Stand-off (h)	Reference
MC fit	15	8:45	Webb et al. (2000)
MC fit	16	7:45	Watari et al. (2001)
MC fit	14	8:36	Ivanov et al. (2003)
MC fit	17	7:45	Lepping et al. (2003)
Plasma		8:35	Webb et al. (2002)
Field rotation	15	7:45	Berdichevsky et al. (2002)
Strong field	19	3:45	Berdichevsky et al. (2002)
Low T_p	17	5:45	Berdichevsky et al. (2002)
Low beta	14	8:45	Berdichevsky et al. (2002)
N_alpha/N_p	22	3:45	Berdichevsky et al. (2002)

Various interpretations of single-point, in-situ observations

Driving Heliospheric Computations at CCMC

Currently, there are three models (yellow) that can be used to drive ENLIL (green)
Computational system shares data sets (grey) and uses couplers (blue)

3-D Values at Time Level – tim.****.nc

- Values are shown on various slices passing through Earth
- Current sheet is shown by white line
- Planet positions are shown by black spheres
- Calendar data and physical time correspond to file record number (****)

• Values are shown at Earth position (thick black line) and nearby grid points (light blue lines).

RUN = 1922a3u0.128x20x90.1-mp3w-1.par1

N (cm^{-3})

15

TIME (days)

B (nT)

15 TIME (days)

10

1997-04-24

1997 - 04 - 24

20

20

25

30

- Observations from NASA-OMNIweb are shown by red dots.
- Viewing evolution at nearby points can reveal effect of numerical resolution and can provide inclination of structures for geospace models

Initial Ambient State

Evolution of Interplanetary Disturbances

May 1998 – CMEs fitted by Liu & al.

May 1998 – CMEs fitted by Liu & al. – 1/2

May 1998 – CMEs fitted by Michalek & al.

