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Abstract
We compare the performance of two alternative algorithms
for force-free magnetic field extrapolations given suitable
boundary conditions. For this comparison, we have imple-
mented both algorithms on the same finite element grid
which uses Whitney forms to describe the fields within the
grid cells. The additional use of conjugate gradient and
multigrid iterations result in quite effective codes.
The Grad-Rubin and Wheatland-Sturrock-Roumeliotis algo-
rithms both perform well for the reconstruction of a known
analytic force-free field. For more arbitrary boundary con-

ditions the Wheatland-Sturrock-Roumeliotis approach has
some difficulties because it requires overdetermined boundary
information which may include inconsistencies. The Grad-
Rubin code on the other hand loses convergence for strong
current densities. For the example we have investigated, how-
ever, the maximum possible current density seems to be not
far from the limit beyond which a force free field cannot exist
anymore for a given normal magnetic field intensity on the
boundary.

The grid: regular 3D Whitney forms

Whitney forms can be considered as the finite element discrete coun-
terpart to differential forms in continuous vector calculus (Bossavit,
1988)

0-form
Lagrange element
for scalars ∈ R

1-form
Nédélec element

for H(curl)

2-form
Raviart-Thomas

element for H(div)

3-form
FV element

for scalars ∈ R

The Nédélec and Raviart-Thomas elements are also known as edge
elements because field components are defined on the edges and
faces of the grid cell (Nédelec, 1986; Raviart and Thomas, 1977).
Fields are mapped naturally from a n-form to an (n + 1)-form by
exterior differentiation:

0-form
grad

- 1-form
curl- 2-form

div- 3-form

• The big advantage: All common differential operators can be
represented as exterior differentiations on forms. Double differenti-
ations give zero exactly, e.g.,

curl ◦ grad ≡ div ◦ curl ≡ 0 ,

div and grad are adjoint operations
The introduction of a dual grid allows a natural relationship between
n-forms of the primal grid and (3 − n)-forms of the dual grid

primary grid box

dual 0-form

In this setting, an n-form of the primal grid has the same repre-
sentation as the (3 − n)-form on the dual grid and vice versa, but
element shape functions are different.
The Hodge (or *)-transform between primal and dual grid only re-

sults in a change of the shape function.
The final pattern (complex) of forms together with mappings among
them:

primal
grid 0-form

grad
-1-form

curl
-2-form

div
-3-form

6 6 6 6? ? ? ?* * * *
dual
grid 3-form

div
� 2-form

curl
� 1-form

grad
� 0-form

The formation of more involved differential operations is obvious.
E.g., the common 7-point stencil Laplacian can be represented as:

for a 0-form: ∆ = ∗ ◦ div ◦ ∗ ◦ grad

for a 1-form: ∆ = grad ◦ ∗ ◦ div ◦ ∗ − ∗ ◦ curl ◦ ∗ ◦ curl

The boundary value problem

The magnetic field in some domain V of the corona may be de-
scribed by

∇·B = 0 ; ∇×B = j ; j×B = 0 (1)

The alignment of current and magnetic field causes the problem to
be nonlinear, hence the questions which boundary information is to
be supplied and how to solve (1) are by no means trivial.

Boundary conditions which seem necessary and sufficient for (1) are
(Boulmezaoud and Amari, 2000)

n·B on the whole boundary ∂V

n·∇×B on either (∂V )− or (∂V )+ (2)

where (∂V )± is that part of the surface of V where n·B is either
> 0 or < 0.

But not the all boundary values which comply with (2) are allowed:
• diff flux conservation on every S(α) ⊂ ∂V where α is any const

∫

S(α)

Bnd2x = 0

• Maxwell’s stresses on ∂V must vanish (Molodensky, 1966)
∫

∂V

(2B2
n − B2) d2x = 0 ,

∫

∂V

BiBj d2x = 0 for i 6= j



Grad-Rubin iteration by means of

Whitney forms

The iteration algorithm by Grad and Rubin (1958) is:

∆φ = 0 with BC ∂nφ = Bn

B(0) = gradφ
do until convergence

integrate α(n) from B(n) · ∇α(n) = 0
δj = ∇×B(n) − α(n)B(n)

solve ∆ δA = δj with BC n× δA = 0,

and (n · ∇) δAn = 0
B(n+1) = B(n) + ∇× δA

end do

Discretized as Whitney forms, the scheme looks as follows:

primal
grid

φ
0-form

grad
-

B
1-form

curl −α·
-

δj
2-form

div-
0

3-form

6 ?+ ∆−1

dual
grid

δB
2-form

curl
�

δA
1-form

The critical operation is α· . It includes:
• the integration of B · ∇α = 0 with the current magnetic field

iterate. As boundary condition we take a weighted average of
observed/assumed α from both ends of the field line.

• the step δj = α · B then includes the mapping from a 1-form
to a 2-form as the only interpolation of the algorithm.

Wheatland-Sturrock-Roumeliotis iteration

by means of Whitney forms

The algorithm proposed by Wheatland, Sturrock and Roumeliotis
(2000) tries to find the force-free field B from

B = argmin(L) , L(B) =

∫

V

|w j×B|2 +

∫

V

|∇·B|2

The discretized integrals are Hilbert products for 3-forms.
For the minimization of L we use a specially designed CG algorithm:
• Exact line search at each iteration step along the search direc-

tion δB(i)

• New search direction δB(i+1) chosen from H-orthogonality:
δB(i+1)HδB(i) = 0 where H is the local Hessian.

Convergence speed scales with 1/(grid size) :
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Numerical Results

To reconstruct a Low and Lou (1990) solution with exact bound-
ary values the Grad-Rubin code requires less than 10 iterations, the
Wheatland-Sturrock-Roumeliotis scheme ∼100 iteration steps to re-
duce the mean square Lorentz force to a value of the discretization
error. The Grad-Rubin code performs slightly faster for comparable
problems.

LLtest0641_1     01.09.2005, 17:44:14, DISLIN 8.2 BINHEST-MPAE

msqBxC  

5 10 15 20
iteration count

-2

-1

0

1

2

3

lo
g 

<|
jx

B
|2 > 

   
   

   

64

32

maxBxC  

5 10 15 20
iteration count

1.0

1.5

2.0

2.5

3.0

3.5

lo
g 

m
ax

 |j
xB

|

64

32

LLptst0641_1     01.09.2005, 17:11:16, DISLIN 8.2 BINHEST-MPAE

msqBxC  

0 200 400 600
iteration count

-2

-1

0

1

2

3

lo
g 

<|
jx

B
|2 > 

   
   

   

032 

32

064 64

P64 

Grad-Rubin Wheatland-et-al

The dashed lines denote the respective residual Lorentz force for the
discretized Low and Lou (1990) solution Borg.
Representative field lines of the Low and Lou (1990) field recon-
struction:

LLtest064o LLtest0641

LLitst0641 LLtest0641

Original Wheatland-et-al without weight

Wheatland-et-al with weight Grad-Rubin

The colour code at the bottom represents Bz, the top plane shows
the vertical projection of the field lines.
The mean square error to the original Low and Lou (1990) field with
iteration count:
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How does the magnetic field help us

with stereoscopy ?

The magnetic field may serve as an important constraint to resolve
some of the ambiuities in the stereo reconstruction of coronal loops.
We will use the magnetic field reconstructions to identify the loops
in the STEREO images (matching problem) and resolve the stereo
ambiguity.
The precedure, we have in mind is:

image 1

?

image 2

?

B-surface
data

?

poss. add.
parameters,

e.g., α

?segment
image 1

into loops
`1 = 1, n1

?

segment
image 2

into loops
`2 = 1, n2

?

calculate coronal
B-field model

?

forall `1 forall `2

calculate
D`1(b) =

area(`1, b)
length(`1)

calculate
D`2(b) =

area(`2, b)
length(`2)

forall b

calculate
field line b

?
determine fieldline

b̂(`1, `2) = argmin(D`1(b) + D`2(b))

?
for, e.g., n1 > n2, determine the permutation π
of n2 elements from a set of n1 which minimizes

D`1 (̂b(`1, π(`1))) + Dπ(`1)(̂b(`1, π(`1))))

The segmentation into loops will be done by ridge detectors (Lin-
deberg, 1998) or the Oriented Connectivity Method of Lee et al.
(2004). The distance measure D`(b) between a loop curve ` found
by one of these methods and a projected magnetic field line b mybe
replaced by alternative measures.
As a result we receive a permutation `1 → `2 = π(`1) which tells
us the association between loops in image 1 and 2.

A simple example

Test loops as seen from two points of view and their segmentation
into curves `1 = 1, 4 and `2 = 1, 4.

The knowledge of the right loop associations removes the ghost fea-
tures which arise when wrong associations (see stereoscopy I below)
between loops are used.
Even a bad magnetic field model may give the right association:
here all models (a to c) gave the right result:

a) Model field lines to be reconstructed
b) Straight forward stereoscopic reconstruction regardless of loop
associations
c-e) Optimal field lines b̂(`1, π(`1)) for different magnetic field mod-
els
b) Stereoscopic reconstruction only of loops associated by `1 →
`2 = π(`1)
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