EUV Imaging Spectrometer (EIS)

H. Hara National Astronomical Observatory of Japan

EIS Science

Yohkoh, SOHO, and TRACE :

reveal dynamic solar corona (flare, plasmoid, jet, coronal expansion ...)

→ Necessity of higher-cadence coronal velocity-field measurements

Flare/CME physics Reconnection physics, Site of large non-thermal line broadening, ...

The development started in 1999. The EIS was delivered to JAXA in summer 2003.

EIS Optical Layout

EIS SOLAR-B

Performance

- Large Effective Area in EUV band: ^{short-λ} band long-λ band 170-210 A & 250-290 A Mo/Si multi-layer coated Mirror and Grating High QE CCD: Two 2048×1024 back illuminated CCD
- Spatial resolution: 2 arcsec resolution over raster-scan area (1 arcsec pixel sampling)
- Line spectroscopy of 20-30 km/s pixel sampling
- Instrumental width in emission lines for 1 arcsec slit observation: short- λ band: 47 mA, long- λ band: 58 mA
- Raster-scan area (EW×NS): 590×512 arcsec² max. FOV center can move in East-West direction by ±890 arcsec.
- Wide temperature coverage: $\log T = 4.7, 5.4, 6.0-7.3$
- Simultaneous observation of multiple lines up to 25

EIS Effective Area

ESS SOLAR-B

EIS Sensitivity

Detected photons per $1'' \times 1''$ area of the sun per 1 sec exposure.

AR: active region

Ion	Wavelength	logT	Np	photons Ion		Wavelength	logT	N _{photons}	
	(A)		AR	M2-Flare		(A)		AR	M2-Flare
Fe X	184.54	6.00	15	36	Fe XVI	251.07	6.40	-	108
Fe XII	186.85 / 186.88	6.11	13/21	105/130	Fe XXII	253.16	7.11	-	71
Fe XXI	187.89	7.00	-	346	Fe XVII	254.87	6.60	-	109
Fe XI	188.23 / 188.30	6.11	41 / 15	110/47	Fe XXVI	255.10	7.30	-	3.3×10 ³
Fe XXIV	192.04	7.30	-	4.0×10 ⁴	He II	256.32	4.70	16	3.6×10 ³
Fe XII	192.39	6.11	46	120	Si X	258.37	6.11	14	62
Ca XVII	192.82	6.70	31	1.8×10 ³	Fe XVI	262.98	6.40	15	437
Fe XII	193.52	6.11	135	305	Fe XXIII	263.76	7.20	-	1.2×10 ³
Fe XII	195.12 / 195.13	6.11	241/16	538/133	Fe XIV	264.78	6.30	20	217
Fe XIII	200.02	6.20	20	113	Fe XIV	270.51	6.30	17	104
Fe XIII	202.04	6.20	35	82	Fe XIV	274.20	6.30	14	76
Fe XIII	203.80 / 203.83	6.20	7/20	38/114	Fe XV	284.16	6.35	111	1.5×10 ³

Observables

Information from a single emission line

- Line intensity
- Line shift by Doppler motion
- Line width: temperature, non-thermal motion

Information from selected two line ratio

- Temperature
- Density

ES SOLAR-B

EIS Slit/Slot

- Four slit selections available
- Direction of slit length: north-south direction
- EUV line spectroscopy

- 1 arcsec \times L arcsec slit for the best quality of image/spectrum quality
- 2 arcsec \times L arcsec slit for a higher throughput
- **EUV Imaging** (Velocity information is convolved.)
 - 40 arcsec \times L arcsec slot for imaging with little overlap
 - -266 arcsec \times L arcsec slot for hunting transient events

L > 1024 arcsec (=CCD height)

EIS Field-of-View (FOV)

Ν

EIS Science Targets

EIS Observations

Examples of 240" ×240" Raster Scan

Expected Accuracy of Velocity

EIS Data Flow

- EIS is an excellent instrument to investigate the dynamical solar upper atmospheres.
- Scientific output will strongly depend on the EIS observation planning in which ideas of scientists are deeply contained.

END

EIS MDP JPEG Compression

A PPARC

AR spectrum for 5 sec integration

EIS JPEG compression error SOLAR-B $\delta DN_{17nm} \delta DN_{29nm}$ Q=95 Q=92 Q = 9840 40 40 Difference (DN) 20 Difference (DN) 20 Difference (DN) 20

1000 100 10 Signal - Offset (DN)

-20

-40

X: signal – offset [DN]; offset~ 500 Y: decomp(comp(Original)) – Original [DN]

1000

0

-20

-40

40

20

0

-20

-40

1

Difference (DN)

1

10

10

100

Signal - Offset (DN)

100

Signal - Offset (DN)

Q = 90

1000

0

-20

-40

