The Solar-B EUV Imaging Spectrometer:

Science with EIS and Stereo with Focus on Velocity Measurement

J. L. Culhane

Mullard Space Science Laboratory University College London

EIS
 Solar-B and STEREO Features

SOLAR-B

- Solar-B
- Optical telescope has a field of view that gives optimum AR coverage
- EIS can cover a larger field
- Must raster with slits for high spectral resolution
- Can image with slots
- 40" FOV with some spectral resolution
- 250" FOV to detect transient events
- XRT provides full Sun filter images, AR context and flare alerts
- STEREO
- Coronagraphs observe CMEs after launch
- EUVI provides full Sun coverage at lower T_{e} than XRT
- STEREO/WAVES characterizes shocks and shock velocities
- Summary
- Solar-B emphasizes detailed studies of potential launch sites
- STEREO emphasizes global coverage of CME events
- XRT and EUVI together provide solar images over a very broad T_{e} range

Solar-B and STEREO

Solar-B will observe the smallerscale magnetic and velocity fields from the photosphere to the corona

Stereo will observe the global coronal phenomena in 3-D

EIS Performance Gains

- Following SOHO CDS, the EIS instrument will provide the next steps in $150-300 \AA \AA$ spectral imaging of the corona:
$-x 10$ enhancement in $A_{\text {eff }}$ from use of multilayers and CCDs
-x 5 enhancement in spectral resolution
-x 2-3 enhancement in spatial resolution
- Like CDS; absolute calibration performed to $\pm 20 \%$

3
 SOLAR-B

EIS Field-of-View

Shift of FOV center with coarse-mirror motion

Maximum FOV for raster observation

EIS Slit
 EIS Observations

Some Relevant EIS Observations

- Solar-B/EIS can contribute to studies of:
$>$ CME-associated dimming outflows
> CME acceleration
> Coronal waves and CMEs
> CME-asociated trans-equatorial structures
- Examples are presented from:
$>$ SOHO CDS with TRACE, EIT and Yohkoh images
- Necessary data from:
> Observations of active region CME launch sites
\Rightarrow Spectral images of active regions during flares/CMEs
> Measurement of T_{e}, n_{e} and especially v as $f\left(T_{e}\right)$ in e.g. dimming sites
> Velocity measurements on disc for e.g. acceleration of ejected material

UCL

CME Dimming Outflows

- Coronal dimming directly associated with outflow (Harra \& Sterling, 2001)

- Bottom panel shows a CDS O V velocity map for a disc event where $\sim 80 \mathrm{~km} / \mathrm{s}$ outflow is seen from the edge of the dimming region
- EIT and CDS limb event observations show intensity reduction and outflow velocities in He I, O V, Mg IX and Fe XVI
- Using EIS:
- select Hell, SiVII, Fe X, Fe XIII, Si X, Fe XIV, Fe XV, Ca XVII lines
- raster slit over 6' $\times 8^{\prime}$ in 30 min.
- raster 40" slot over 6' x 8' in 1 min.
- Respond quickly to dimming onsets
- High velocity CME seen on limb by TRACE, UVCS and LASCO (Gallagher et al., 2003)
- Exponential acceleration and deceleration with constant velocity phase observed in LASCO - often the case

- EIS will measure velocity for on-disc events
- Similar acceleration behaviour seen in erupting flux-rope (Williams et al., 2005)
- Velocities from TRACE
- SOHO CDS has seen similar structures but with poor cadence

- EIS will operate at much higher cadence

Coronal Wave and Ejection Observations

ElsHarra and Sterling, 2003, using TRACE and SOHO CDS, observed a flare with associated Coronal Wave and CME

- EIT 195Å image with TRACE and SOHO CDS FoVs
- waves in TRACE; v ~200 and $500 \mathrm{~km} / \mathrm{s}$
- erupting filament material; v ~ 150-300 km/s measured from CDS O V, He I and Mg X lines

- Optimised EIS raster will respond faster to waves and erupting filament material

Large Scale Coronal Features

Large-scale trans-equatorial coronal loops and filaments have been observed for decades
They are sometimes related to coronal mass ejections (Khan and Hudson, 2000)
Zhou et al. (2005) find that
 trans-equatorial filaments erupt with 13% of halo CMEs while for trans-equatorial loops, the association is for 40\% of cases

EIS SOLAR-B
 CMEs and Transequatorial Loops

- Sequence of three transequatorial loop disappearances observed with Yohkoh SXT (Khan and Hudson, 2000)
- Each disappearance closely associated with a major flare (X2.7, M3.1, M7.7) and a CME
- X-ray loop plasma masses are similar to those released in CMEs
- Waves from the flare region (AR 8210) play a role in the disappearances
- EIS could measure velocities at flare AR site or at intermediate position on loop

$1 S$
 Erupting Filaments

SOLAR-B

- Wang et al.(2005) show Bastille day flare not isolated to the active region
- Activation of the huge trans-equatorial filament precedes the filament eruption and flare that occur simultaneously in the source active region

- Positioning of EIS raster and operating mode choice are crucial CONCLUSIONS
- Studies of the CME launch process are important
- Solar-B can investigate launch-related phenomena in some detail
- EIS can measure the properties of coronal and transition region plasma and its flow velocity at potential launch sites
- Combination of slit and slot registration allows spectral imaging or optimized raster scanning for high spectral resolution
- While EIS can be re-pointed E-W limb-to-limb, N-S coverage is limited to \pm 4.25 arc min from spacecraft Sun-pointing axis
- Solar-B spacecraft pointing will therefore need to be specified for particular CME-related targets
- Joint Observing Programmes involving EIS will be appropriate for at least:
- Dimming outflows - Coronal waves
- CME acceleration - Large-scale structure eruptions

END OF TALK

