

The Geometric Localization of STEREO CMEs

GRL Vol. 31, No. 21, L21802, Nov 2004

V.J. Pizzo and D.A. Biesecker NOAA Space Environment Center

Geometric Localization Technique

What 'Geometric Localization' (GL) does
 Given observations of any structure from 2 different places

 at the same time if a transient structure

It works on 'any' structure for which an 'edge' is visible

 GL defines a volume which circumscribes that structure

WHY Concentrate upon CMEs?

Forecasting (Geomagnetic Storms)
 currently use single observatory (halo/non-halo)
 Estimate – if Earth impact; when; how strong?

 STEREO can improve this

 Vastly improved estimate of Earthdirected CME properties -> geomagnetic disturbances
 Improved knowledge of coronal and interplanetary structures along E/S line

Geometric Localization Technique

How will this be implemented for STEREO? Start by simulating STEREO data 2 views of CME's don't yet exist We generate CME model Parameterized coronal background and transient Apply our 'geometric' technique Results in a set of stacked quadrilaterals that bound the CME Compare results to input model

STEREO Beacon Data

24/7 real-time beacon data See Biesecker and Webb poster SH21B-0412 Low-cadence, low resolution in-situ imaging 5-minute latency SECCHI/COR2 images 4x per hour \sim 1/8 resolution (256x256 pixels ~ 120")

Schematic of 'Geometric Localization' Technique

- Need location of 2 spacecraft
 - Defines a plane
- Need location of 'edges' of CME
 - Defines a quadrilateral circumscribing CME

Applying the technique

Mark one edge – L_{A1}

- s/c s/c Sun plane: defines a line
- Mark L_{A2}; and then in other s/c image mark L_{B1 &} L_{B2}
- Choose a succession of starting points thin slices

The Resulting Localization

Comparison of localization model to input CME

- 3 perspectives
- Geometric Localization circumscribes input CME

How well does it work?

One measure of error

- Ratio of area determined by GL to area of input CME
 ~ f(X)
- Quantifiable critical for forecasters
- Ideal separation 90°
 - Two years into mission
- Reasonable uncertainty (<50%)
 - Year 1 to Year 3

Comparing area of crosssection of model to crosssection of CME

Planned additional work

- Explore much broader range of examples
 - Vary CME shape, density distribution
- Making it an operational product
 - Improve/refine error analysis
 - Automated CME detection & edge detection
 - Apply to successive SECCHI COR2 images
 - Location, extent, velocity
 - If CME will arrive and when
 - How much of the CME Earth will see (strength and duration)
 - Streamline and document software
- Relate to polarization analysis (Moran and Davila 2004; Dere *et al.*)
 - GL removes plane of sky ambiguity
 - Polarization analysis provides info. on internal structural

Additional work - continued

Science/understanding

- Major boost to correlation studies
- Improved understanding of response of interplanetary environment to solar drivers
- Input/boundary condition for other 3-d techniques

Summary

 Geometric localization provides a 'simple to use' technique

- Potential for automation
- Application to CME's aids in forecasting geomagnetic storms
 - From length of cut through CME on Sun-Earth line
 - Improved prediction of if/when CME will hit Earth
 - Information on storm strength/duration
 - Quantifiable error estimates
 - Adding a 3rd view helps significantly (*e.g.* SOHO/LASCO)
- Implementation in time for start of STEREO mission expected
- Therefore, ideal for forecasting!
- Useful for collaborative scientific investigation
 - *e.g.* Polarization Analysis

Backup slides

Polarization Analysis

On a pixel by pixel basis – finds C.O.M. along a line of sight

- Collapses a 3-d structure into ~2.5-d
- Gives spatial information

Polarization Analysis + Geometric Localization

Polarization Analysis and Geometric Localization are complementary

- Geometric Localization resolves plane-of-sky ambiguities inherent in polarization analysis
- Polarization analysis can provide more information about CME structure (*i.e.* mass distribution)

SOHO/LASCO CMEs

